ترغب بنشر مسار تعليمي؟ اضغط هنا

Link between quantum measurement and the iepsilon term in the QFT propagator

256   0   0.0 ( 0 )
 نشر من قبل Luca Bombelli
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Mensky has suggested to account for continuous measurement by attaching to a path integral a weight function centered around the classical path that the integral assigns a probability amplitude to. We show that in fact this weight function doesnt have to be viewed as an additional ingredient put in by hand. It can be derived instead from the conventional path integral if the infinitesimal term iepsilon in the propagator is made finite; the classical trajectory is proportional to the current.



قيم البحث

اقرأ أيضاً

144 - Albert Much 2016
In this work, the second-quantized version of the spatial-coordinate operator, known as the Newton-Wigner-Pryce operator, is explicitly given w.r.t. the massless scalar field. Moreover, transformations of the conformal group are calculated on eigenfu nctions of this operator in order to investigate the covariance group w.r.t. probability amplitudes of localizing particles.
We provide a model independent construction of a net of C*-algebras satisfying the Haag-Kastler axioms over any spacetime manifold. Such a net, called the net of causal loops, is constructed by selecting a suitable base K encoding causal and symmetry properties of the spacetime. Considering K as a partially ordered set (poset) with respect to the inclusion order relation, we define groups of closed paths (loops) formed by the elements of K. These groups come equipped with a causal disjointness relation and an action of the symmetry group of the spacetime. In this way the local algebras of the net are the group C*-algebras of the groups of loops, quotiented by the causal disjointness relation. We also provide a geometric interpretation of a class of representations of this net in terms of causal and covariant connections of the poset K. In the case of the Minkowski spacetime, we prove the existence of Poincare covariant representations satisfying the spectrum condition. This is obtained by virtue of a remarkable feature of our construction: any Hermitian scalar quantum field defines causal and covariant connections of K. Similar results hold for the chiral spacetime $S^1$ with conformal symmetry.
We study the perturbative quantization of 2-dimensional massive scalar field theory with polynomial (or power series) potential on manifolds with boundary. We prove that it fits into the functorial quantum field theory framework of Atiyah-Segal. In p articular, we prove that the perturbative partition function defined in terms of integrals over configuration spaces of points on the surface satisfies an Atiyah-Segal type gluing formula. Tadpoles (short loops) behave nontrivially under gluing and play a crucial role in the result.
This work concerns the statistics of the Two-Time Measurement definition of heat variation in each reservoir of a thermodynamic quantum system. We study the cumulant generating function of the heat flows in the thermodynamic and large-time limits. It is well-known that, if the system is time-reversal invariant, this cumulant generating function satisfies the celebrated Evans--Searles symmetry. We show in addition that, under appropriate ultraviolet regularity assumptions on the local interaction between the reservoirs, it satisfies a translation-invariance property, as proposed in [Andrieux et al. New J. Phys. 2009]. We particularly fix some proofs of the latter article where the ultraviolet condition was not mentioned. We detail how these two symmetries lead respectively to fluctuation relations and a statistical refinement of heat conservation for isolated thermodynamic quantum systems. As in [Andrieux emph{et al.} New J. Phys. 2009], we recover the Fluctuation-Dissipation Theorem in the linear response theory, short of Green--Kubo relations. We illustrate the general theory on a number of canonical models.
The role played by Deligne-Beilinson cohomology in establishing the relation between Chern-Simons theory and link invariants in dimensions higher than three is investigated. Deligne-Beilinson cohomology classes provide a natural abelian Chern-Simons action, non trivial only in dimensions $4l+3$, whose parameter $k$ is quantized. The generalized Wilson $(2l+1)$-loops are observables of the theory and their charges are quantized. The Chern-Simons action is then used to compute invariants for links of $(2l+1)$-loops, first on closed $(4l+3)$-manifolds through a novel geometric computation, then on $mathbb{R}^{4l+3}$ through an unconventional field theoretic computation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا