ﻻ يوجد ملخص باللغة العربية
This work concerns the statistics of the Two-Time Measurement definition of heat variation in each reservoir of a thermodynamic quantum system. We study the cumulant generating function of the heat flows in the thermodynamic and large-time limits. It is well-known that, if the system is time-reversal invariant, this cumulant generating function satisfies the celebrated Evans--Searles symmetry. We show in addition that, under appropriate ultraviolet regularity assumptions on the local interaction between the reservoirs, it satisfies a translation-invariance property, as proposed in [Andrieux et al. New J. Phys. 2009]. We particularly fix some proofs of the latter article where the ultraviolet condition was not mentioned. We detail how these two symmetries lead respectively to fluctuation relations and a statistical refinement of heat conservation for isolated thermodynamic quantum systems. As in [Andrieux emph{et al.} New J. Phys. 2009], we recover the Fluctuation-Dissipation Theorem in the linear response theory, short of Green--Kubo relations. We illustrate the general theory on a number of canonical models.
The first law of thermodynamics states that the average total energy current between different reservoirs vanishes at large times. In this note we examine this fact at the level of the full statistics of two times measurement protocols also known as
We consider the totally asymmetric simple exclusion process, a model in the KPZ universality class. We focus on the fluctuations of particle positions starting with certain deterministic initial conditions. For large time t, one has regions with cons
We show that non-Markovian effects of the reservoirs can be used as a resource to extract work from an Otto cycle. The state transformation under non-Markovian dynamics is achieved via a two-step process, namely an isothermal process using a Markovia
The thermodynamic properties of quantum heat engines are stochastic owing to the presence of thermal and quantum fluctuations. We here experimentally investigate the efficiency and nonequilibrium entropy production statistics of a spin-1/2 quantum Ot
In this paper limiting distribution functions of field and density fluctuations are explicitly and rigorously computed for the different phases of the Bose gas. Several Gaussian and non-Gaussian distribution functions are obtained and the dependence