ترغب بنشر مسار تعليمي؟ اضغط هنا

Flux calibration of the Herschel-SPIRE photometer

165   0   0.0 ( 0 )
 نشر من قبل George J. Bendo
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We describe the procedure used to flux calibrate the three-band submillimetre photometer in the Spectral and Photometric Imaging REceiver (SPIRE) instrument on the Herschel Space Observatory. This includes the equations describing the calibration scheme, a justification for using Neptune as the primary calibration source, a description of the observations and data processing procedures used to derive flux calibration parameters (for converting from voltage to flux density) for every bolometer in each array, an analysis of the error budget in the flux calibration for the individual bolometers, and tests of the flux calibration on observations of primary and secondary calibrators. The procedure for deriving the flux calibration parameters is divided into two parts. In the first part, we use observations of astronomical sources in conjunction with the operation of the photometer internal calibration source to derive the unscaled derivatives of the flux calibration curves. To scale the calibration curves in Jy/beam/V, we then use observations of Neptune in which the beam of each bolometer is mapped using Neptune observed in a very fine scan pattern. The total instrumental uncertainties in the flux calibration for the individual bolometers is ~0.5% for most bolometers, although a few bolometers have uncertainties of ~1-5% because of issues with the Neptune observations. Based on application of the flux calibration parameters to Neptune observations performed using typical scan map observing modes, we determined that measurements from each array as a whole have instrumental uncertainties of 1.5%. This is considerably less than the absolute calibration uncertainty associated with the model of Neptune, which is estimated at 4%.



قيم البحث

اقرأ أيضاً

This paper provides an overview of the PACS photometer flux calibration concept, in particular for the principal observation mode, the scan map. The absolute flux calibration is tied to the photospheric models of five fiducial stellar standards (alph a Boo, alpha Cet, alpha Tau, beta And, gamma Dra). The data processing steps to arrive at a consistent and homogeneous calibration are outlined. In the current state the relative photometric accuracy is around 2% in all bands. Starting from the present calibration status, the characterization and correction for instrumental effects affecting the relative calibration accuracy is described and an outlook for the final achievable calibration numbers is given. After including all the correction for the instrumental effects, the relative photometric calibration accuracy (repeatability) will be as good as 0.5% in the blue and green band and 2% in the red band. This excellent calibration starts to reveal possible inconsistencies between the models of the K-type and the M-type stellar calibrators. The absolute calibration accuracy is therefore mainly limited by the 5% uncertainty of the celestial standard models in all three bands. The PACS bolometer response was extremely stable over the entire Herschel mission and a single, time-independent response calibration file is sufficient for the processing and calibration of the science observations. The dedicated measurements of the internal calibration sources were needed only to characterize secondary effects. No aging effects of the bolometer or the filters have been found. Also, we found no signs of filter leaks. The PACS photometric system is very well characterized with a constant energy spectrum nu*Fnu = lambda*Flambda = const as a reference. Colour corrections for a wide range of sources SEDs are determined and tabulated.
SPIRE, the Spectral and Photometric Imaging Receiver, is the Herschel Space Observatorys submillimetre camera and spectrometer. It contains a three-band imaging photometer operating at 250, 350 and 500 {mu}m, and an imaging Fourier transform spectrom eter (FTS) covering 194-671 {mu}m (447-1550 GHz). In this paper we describe the initial approach taken to the absolute calibration of the SPIRE instrument using a combination of the emission from the Herschel telescope itself and the modelled continuum emission from solar system objects and other astronomical targets. We present the photometric, spectroscopic and spatial accuracy that is obtainable in data processed through the standard pipelines. The overall photometric accuracy at this stage of the mission is estimated as 15% for the photometer and between 15 and 50% for the spectrometer. However, there remain issues with the photometric accuracy of the spectra of low flux sources in the longest wavelength part of the SPIRE spectrometer band. The spectrometer wavelength accuracy is determined to be better than 1/10th of the line FWHM. The astrometric accuracy in SPIRE maps is found to be 2 arcsec when the latest calibration data are used. The photometric calibration of the SPIRE instrument is currently determined by a combination of uncertainties in the model spectra of the astronomical standards and the data processing methods employed for map and spectrum calibration. Improvements in processing techniques and a better understanding of the instrument performance will lead to the final calibration accuracy of SPIRE being determined only by uncertainties in the models of astronomical standards.
We present a flux calibration scheme for the PACS chopped point-source photometry observing mode based on the photometry of five stellar standard sources. This mode was used for science observations only early in the mission. Later, it was only used for pointing and flux calibration measurements. Its calibration turns this type of observation into fully validated data products in the Herschel Science Archive. Systematic differences in calibration with regard to the principal photometer observation mode, the scan map, are derived and amount to 5-6%. An empirical method to calibrate out an apparent response drift during the first 300 Operational Days is presented. The relative photometric calibration accuracy (repeatability) is as good as 1% in the blue and green band and up to 5% in the red band. Like for the scan map mode, inconsistencies among the stellar calibration models become visible and amount to 2% for the five standard stars used. The absolute calibration accuracy is therefore mainly limited by the model uncertainty, which is 5% for all three bands.
The SPIRE Fourier Transform Spectrometer on board the Herschel Space Observatory had two standard spectral resolution modes for science observations: high resolution (HR) and low resolution (LR), which could also be performed in sequence (H+LR). A co mparison of the HR and LR resolution spectra taken in this sequential mode, revealed a systematic discrepancy in the continuum level. Analysing the data at different stages during standard pipeline processing, demonstrates the telescope and instrument emission affect HR and H+LR observations in a systematically different way. The origin of this difference is found to lie in the variation of both the telescope and instrument response functions, while it is triggered by fast variation of the instrument temperatures. As it is not possible to trace the evolution of the response functions through auxiliary housekeeping parameters, the calibration cannot be corrected analytically. Therefore an empirical correction for LR spectra has been developed, which removes the systematic noise introduced by the variation of the response functions.
We describe an update to the Herschel-SPIRE Fourier-Transform Spectrometer (FTS) calibration for extended sources, which incorporates a correction for the frequency-dependent far-field feedhorn efficiency, $eta_mathrm{FF}$. This significant correctio n affects all FTS extended-source calibrated spectra in sparse or mapping mode, regardless of the spectral resolution. Line fluxes and continuum levels are underestimated by factors of 1.3-2 in the Spectrometer Long-Wavelength band (SLW, 447-1018 GHz; 671-294 $mu$m) and 1.4-1.5 in the Spectrometer Short-Wavelength band (SSW, 944-1568 GHz; 318-191 $mu$m). The correction was implemented in the FTS pipeline version 14.1 and has also been described in the SPIRE Handbook since Feb 2017. Studies based on extended-source calibrated spectra produced prior to this pipeline version should be critically reconsidered using the current products available in the Herschel Science Archive. Once the extended-source calibrated spectra are corrected for $eta_mathrm{FF}$, the synthetic photometry and the broadband intensities from SPIRE photometer maps agree within 2-4% -- similar levels to the comparison of point-source calibrated spectra and photometry from point-source calibrated maps. The two calibration schemes for the FTS are now self-consistent: the conversion between the corrected extended-source and point-source calibrated spectra can be achieved with the beam solid angle and a gain correction that accounts for the diffraction loss.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا