ﻻ يوجد ملخص باللغة العربية
We study the dynamic effects in the double graphene-layer (GL) structures with the resonant-tunneling (RT) and the negative differential inter-GL conductivity. Using the developed model, which accounts for the excitation of self-consistent oscillations of the electron and hole densities and the ac electric field between GLs (plasma oscillations), we calculate the admittance of the double-GL RT structures as a function of the signal frequency and applied voltages, and the spectrum and increment/decrement of plasma oscillations. Our results show that the electron-hole plasma in the double-GL RT structures with realistic parameters is stable with respect to the self-excitation of plasma oscillations and aperiodic perturbations. The stability of the electron-hole plasma at the bias voltages corresponding to the inter-GL RT and strong nonlinearity of the RT current-voltage characteristics enable using the double-GL RT structures for detection of teraherz (THz) radiation. The excitation of plasma oscillations by the incoming THz radiation can result in a sharp resonant dependence of detector responsivity on radiation frequency and the bias voltage. Due to a strong nonlinearity of the current-voltage characteristics of the double-GL structures at RT and the resonant excitation of plasma oscillations, the maximum responsivity, $R_V^{max}$, can markedly exceed the values $(10^4 - 10^5)$~V/W at room temperature.
We propose and substantiate the concept of terahertz (THz) laser enabled by the resonant electron radiative transitions between graphene layers (GLs) in double-GL structures. We estimate the THz gain for TM-mode exhibiting very low Drude absorption i
We propose the concept of terahertz (THz) photomixing enabled by the interband electron transitions due to the absorption of modulated optical radiation in double-graphene layer (double-GL) structures and the resonant excitation of plasma oscillation
We study the spectra and damping of surface plasmon-polaritons in double graphene layer structures. It is shown that application of bias voltage between layers shifts the edge of plasmon absorption associated with the interband transitions. This effe
We induce surface carrier densities up to $sim7cdot 10^{14}$cm$^{-2}$ in few-layer graphene devices by electric double layer gating with a polymeric electrolyte. In 3-, 4- and 5-layer graphene below 20-30K we observe a logarithmic upturn of resistanc
We present a self-consistent calculation, based on the global coherent tunnelling model, and show that structural asymmetry of double barrier resonant tunnelling structures significantly modifies the current-voltage characteristics compared to the sy