ﻻ يوجد ملخص باللغة العربية
We show that macroscopic nonintegrable lattices of spins 1/2, which are often considered to be chaotic, do not exhibit the basic property of classical chaotic systems, namely, exponential sensitivity to small perturbations. We compare chaotic lattices of classical spins and nonintegrable lattices of spins 1/2 in terms of their magnetization responses to imperfect reversal of spin dynamics known as Loschmidt echo. In the classical case, magnetization exhibits exponential sensitivity to small perturbations of Loschmidt echoes, which is characterized by twice the value of the largest Lyapunov exponent of the system. In the case of spins 1/2, magnetization is only power-law sensitive to small perturbations. Our findings imply that it is impossible to define Lyapunov exponents for lattices of spins 1/2 even in the macroscopic limit. At the same time, the above absence of exponential sensitivity to small perturbations is an encouraging news for the efforts to create quantum simulators. The power-law sensitivity of spin 1/2 lattices to small perturbations is predicted to be measurable in nuclear magnetic resonance experiments.
Given a quantum many-body system and the expectation-value dynamics of some operator, we study how this reference dynamics is altered due to a perturbation of the systems Hamiltonian. Based on projection operator techniques, we unveil that if the per
We study the stroboscopic dynamics of a spin-$S$ object subjected to $delta$-function kicking in the transverse magnetic field which is generated following the Fibonacci sequence. The corresponding classical Hamiltonian map is constructed in the larg
We establish a link between metastability and a discrete time-crystalline phase in a periodically driven open quantum system. The mechanism we highlight requires neither the system to display any microscopic symmetry nor the presence of disorder, but
Quantum chaos refers to signatures of classical chaos found in the quantum domain. Recently, it has become common to equate the exponential behavior of out-of-time order correlators (OTOCs) with quantum chaos. The quantum-classical correspondence bet
We show that a class of random all-to-all spin models, realizable in systems of atoms coupled to an optical cavity, gives rise to a rich dynamical phase diagram due to the pairwise separable nature of the couplings. By controlling the experimental pa