ﻻ يوجد ملخص باللغة العربية
We show that a class of random all-to-all spin models, realizable in systems of atoms coupled to an optical cavity, gives rise to a rich dynamical phase diagram due to the pairwise separable nature of the couplings. By controlling the experimental parameters, one can tune between integrable and chaotic dynamics on the one hand, and between classical and quantum regimes on the other hand. For two special values of a spin-anisotropy parameter, the model exhibits rational-Gaudin type integrability and it is characterized by an extensive set of spin-bilinear integrals of motion, independent of the spin size. More generically, we find a novel integrable structure with conserved charges that are not purely bilinear. Instead, they develop `dressing tails of higher-body terms, reminiscent of the dressed local integrals of motion found in Many-Body Localized phases. Surprisingly, this new type of integrable dynamics found in finite-size spin-1/2 systems disappears in the large-$S$ limit, giving way to classical chaos. We identify parameter regimes for characterizing these different dynamical behaviors in realistic experiments, in light of the limitations set by cavity dissipation.
The ensemble averaged power scattered in and out of lossless chaotic cavities decays as a power law in time for large times. In the case of a pulse with a finite duration, the power scattered from a single realization of a cavity closely tracks the p
The cavity method is a well established technique for solving classical spin models on sparse random graphs (mean-field models with finite connectivity). Laumann et al. [arXiv:0706.4391] proposed recently an extension of this method to quantum spin-1
We study the matrix elements of local and nonlocal operators in the single-particle eigenstates of two paradigmatic quantum-chaotic quadratic Hamiltonians; the quadratic Sachdev-Ye-Kitaev (SYK2) model and the three-dimensional Anderson model below th
In this letter, we demonstrate that a non-Hermitian Random Matrix description can account for both spectral and spatial statistics of resonance states in a weakly open chaotic wave system with continuously distributed losses. More specifically, the s
Generalised hydrodynamics predicts universal ballistic transport in integrable lattice systems when prepared in generic inhomogeneous initial states. However, the ballistic contribution to transport can vanish in systems with additional discrete symm