ﻻ يوجد ملخص باللغة العربية
We study the Blume-Capel model on the square lattice. To allow for wetting and interfacial adsorption, the spins on opposite boundaries are fixed in two different states, +1 and -1, with reduced couplings at one of the boundaries. Using mainly Monte Carlo techniques, of Metropolis and Wang-Landau type, phase diagrams showing bulk and wetting transitions are determined. The role of the non-boundary state, 0, adsorbed preferably at the interface between -1 and +1 rich regions, is elucidated.
We investigate the scaling of the interfacial adsorption of the two-dimensional Blume-Capel model using Monte Carlo simulations. In particular, we study the finite-size scaling behavior of the interfacial adsorption of the pure model at both its firs
We study the effect of interfacial phenomena in two-dimensional perfect and random (or disordered) $q$-state Potts models with continuous phase transitions, using, mainly, Monte Carlo techniques. In particular, for the total interfacial adsorption, t
The effects of bond randomness on the universality aspects of the simple cubic lattice ferromagnetic Blume-Capel model are discussed. The system is studied numerically in both its first- and second-order phase transition regimes by a comprehensive fi
Systems of particles in a confining potential exhibit a spatially dependent density which fundamentally alters the nature of phase transitions that occur. A specific instance of this situation, which is being extensively explored currently, concerns
The critical properties of the spin-1 two-dimensional Blume-Capel model on directed and undi- rected random lattices with quenched connectivity disorder is studied through Monte Carlo simulations. The critical temperature, as well as the critical poi