ﻻ يوجد ملخص باللغة العربية
Complex behavior in glassforming liquids is associated with formation of a mosaic of different structures. Using bond order parameters together with topological characteristics of the bond network, we show that in the mosaic of crystalline and amorphous clusters found in a 2D liquid the difference between structural sub- components translates into a difference between two coexisting phases. We suggest that the observed microphase separated mosaic is a 2D realization of what is usually invoked to explain special features found in 3D complex liquids. Conditions favoring mosaic stability are discussed; these conditions include a new type of critical behavior and long-range correlations between sub-component clusters.
Non-equilibrium phase separating systems with reactions can break time-reversal symmetry (TRS) in two distinct ways. Firstly, the conservative and non-conservative sectors of the dynamics can be governed by incompatible free energies; when both secto
We review the mechanism and consequences of the bridging-induced attraction, a generic biophysical principle which underpins some existing models for chromosome organisation in 3-D. This attraction, which was revealed in polymer physics-inspired comp
We introduce a new mechanism for the propulsion and separation by chirality of small ferromagnetic particles suspended in a liquid. Under the action of a uniform d.c. magnetic field H and an a.c. electric field E isomers with opposite chirality move
We have evidenced by small angle neutron scattering at low temperature the coexistence of ferromagnetism (F) and antiferromagnetism (AF) in Pr0.67Ca0.33MnO3. The results are compared to those obtained in Pr0.80Ca0.20MnO3 and Pr0.63Ca0.37MnO3, which a
Volume and enthalpy relaxation of glasses after a sudden temperature change has been extensively studied since Kovacs seminal work. One observes an asymmetric approach to equilibrium upon cooling versus heating and, more counter-intuitively, the expa