ترغب بنشر مسار تعليمي؟ اضغط هنا

Electromagnetic propulsion and separation by chirality of nanoparticles in liquids

142   0   0.0 ( 0 )
 نشر من قبل Anton Andreev
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce a new mechanism for the propulsion and separation by chirality of small ferromagnetic particles suspended in a liquid. Under the action of a uniform d.c. magnetic field H and an a.c. electric field E isomers with opposite chirality move in opposite directions. Such a mechanism could have a significant impact on a wide range of emerging technologies. The component of the chiral velocity that is odd in H is found to be proportional to the intrinsic orbital and spin angular momentum of the magnetized electrons. This effect arises because a ferromagnetic particle responds to the applied torque as a small gyroscope.



قيم البحث

اقرأ أيضاً

Complex behavior in glassforming liquids is associated with formation of a mosaic of different structures. Using bond order parameters together with topological characteristics of the bond network, we show that in the mosaic of crystalline and amorph ous clusters found in a 2D liquid the difference between structural sub- components translates into a difference between two coexisting phases. We suggest that the observed microphase separated mosaic is a 2D realization of what is usually invoked to explain special features found in 3D complex liquids. Conditions favoring mosaic stability are discussed; these conditions include a new type of critical behavior and long-range correlations between sub-component clusters.
Molecular Dynamics (MD) simulations are presented for a coarse-grained bead-spring model of ring polymer brushes under compression. Flexible polymer brushes are always disordered during compression, whereas semiflexible brushes tend to be ordered und er sufficiently strong compression. Besides, the polymer monomer density of semiflexible polymer brush is very high near the polymer brush surface, inducing a peak value of free energy near the polymer brush surface. Therefore, by compressing nanoparticles (NPs) in semiflexible ring brush system, NPs tend to exhibit a closely packed single layer structure between the brush surface and the impenetrable wall, which provide a new access of designing responsive applications.
56 - Wijnand Broer , Bing-Sui Lu , 2021
We model a cholesteric liquid crystal as a planar uniaxial multilayer system, where the orientation of each layer differs slightly from that of the adjacent one. This allows us to analytically simplify the otherwise acutely complicated calculation of the Casimir-Lifshitz torque. Numerical results differ appreciably from the case of nematic liquid crystals, which can be treated like bloc birefringent media. In particular, we find that the torque deviates considerably from its usual sinusoidal behavior as a function of the misalignment angle. In the case of a birefringent crystal faced with a cholesteric liquid one, the Casimir-Lifshitz torque decreases more slowly as a function of distance than in the nematic case. In the case of two cholesteric liquid crystals, either in the homochiral or in the heterochiral configuration, the angular dependence changes qualitatively as a function of distance. In all considered cases, finite pitch length effects are most pronounced at distances of about 10 nm.
We discuss the flow field and propulsion velocity of active droplets, which are driven by body forces residing on a rigid gel. The latter is modelled as a porous medium which gives rise to permeation forces. In the simplest model, the Brinkman equati on, the porous medium is characterised by a single length scale $ell$ --the square root of the permeability. We compute the flow fields inside and outside of the droplet as well as the energy dissipation as a function of $ell$. We furthermore show that there are optimal gel fractions, giving rise to maximal linear and rotational velocities. In the limit $elltoinfty$, corresponding to a very dilute gel, we recover Stokes flow. The opposite limit, $ellto 0$, corresponding to a space filling gel, is singular and not equivalent to Darcys equation, which cannot account for self-propulsion.
It is well-known that the interaction between passivated nanoparticles can be tuned by their complete immersion in a chosen solvent, such as water. What remains unclear on a molecular level is how nanoparticle interactions may be altered in the prese nce of solvent vapor where complete immersion is not achieved. In this paper, we report an all-atom molecular dynamics simulation study of the change in pair potential of mean force between dodecane thiol ligated gold nanoparticles (AuNPs) when exposed to water vapor. With the equilibrium vapor pressure of water at 25 degree C, there is very rapid condensation of water molecules onto the surface of the AuNPs in the form of mobile clusters of 100-2000 molecules that eventually coalesce into a few large clusters. When the distance between two AuNPs decreases, a water cluster bridging them provides an adhesive force that increases the depth and alters the shape of the pair-potential of mean force. That change of shape includes a decreased curvature near the minimum, consistent with experimental data showing that cyclic exposure to water vapor and its removal reversibly decreases and increases the Youngs modulus of a freely suspended self-assembled monolayer of these AuNPs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا