ﻻ يوجد ملخص باللغة العربية
The Advanced LIGO observatory recently reported the first direct detection of gravitational waves predicted by Einstein (1916). We report on the first optical observations of the Gravitational Wave (GW) source GW150914 error region with the Global MASTER Robotic Net. We detected several optical transients, which proved to be unconnected with the GW event. Our result is consistent with the assumption that gravitational waves were produced by a binary black hole merger. The detection of the event confirmed the main prediction of the population synthesis performed with the Scenario Machine formulated in Lipunov1997b.
The Advanced LIGO observatory recently reported the first direct detection of gravitational waves (GW) which triggered ALIGO on 2015 September 14. We report on observations taken with the Swift satellite two days after the trigger. No new X-ray, opti
We present our optical follow-up observations to search for an electromagnetic counterpart of the first gravitational wave source GW150914 in the framework of the Japanese collaboration for Gravitational wave ElectroMagnetic follow-up (J-GEM), which
A gravitational-wave (GW) transient was identified in data recorded by the Advanced Laser Interferometer Gravitational-wave Observatory (LIGO) detectors on 2015 September 14. The event, initially designated G184098 and later given the name GW150914,
This Supplement provides supporting material for arXiv:1602.08492 . We briefly summarize past electromagnetic (EM) follow-up efforts as well as the organization and policy of the current EM follow-up program. We compare the four probability sky maps
There are the results of gamma-ray bursts observations obtained using the MASTER robotic telescope in 2007 - 2009. We observed 20 error-boxes of gamma-ray bursts this period.The limits on their optical brightnesses have been derived. There are 5 prom