ﻻ يوجد ملخص باللغة العربية
In this work, we present the results of two-dimensional radiation-hydrodynamics simulations of a hohlraum target whose outgoing radiation is used to produce a homogeneously ionized carbon plasma for ion-beam stopping measurements. The cylindrical hohlraum with gold walls is heated by a frequency-doubled ($lambda_l = 526.5$ $mu m$) $1.4$ $ns$ long laser pulse with the total energy of $E_l = 180$ $J$. At the laser spot, the peak matter and radiation temperatures of, respectively, $T approx 380$ $eV$ and $T_r approx 120$ $eV$ are observed. X-rays from the hohlraum heat the attached carbon foam with a mean density of $rho_C = 2$ $mg/cm^3$ to a temperature of $T approx 25$ $eV$. The simulation shows that the carbon ionization degree ($Z approx 3.75$) and its column density stay relatively stable (within variations of about $pm7%$) long enough to conduct the ion-stopping measurements. Also, it is found that a special attention should be paid to the shock wave, emerging from the X-ray heated copper support plate, which at later times may significantly distort the carbon column density traversed by the fast ions.
Hot dense capsule implosions driven by z-pinch x-rays have been measured for the first time. A ~220 eV dynamic hohlraum imploded 1.7-2.1 mm diameter gas-filled CH capsules which absorbed up to ~20 kJ of x-rays. Argon tracer atom spectra were used to
The dynamics of nuclear reaction in plasma is a fundamental issue in many high energy density researches, such as the astrophysical reactions and the inertial confinement fusion. The effective reaction cross-sections and ion stopping power in plasma
Advanced linear accelerator design may use Optical Transition Radiation (OTR) screens to measure beam spot size; for instance, such screens are foreseen in plasma based accelerators (EuPRAXIA@SPARC_LAB) or Compton machines (Gamma Beam Source@ELI-NP).
A dynamic mitigation is presented for sausage and kink instability growths of a z-current driven magnetized plasma column. We have proposed a dynamic mitigation method based on a phase control to smooth plasma non-uniformities and to mitigate the ins
The derivation of Debye shielding and Landau damping from the $N$-body description of plasmas requires many pages of heavy kinetic calculations in classical textbooks and is done in distinct, unrelated chapters. Using Newtons second law for the $N$-b