ﻻ يوجد ملخص باللغة العربية
The derivation of Debye shielding and Landau damping from the $N$-body description of plasmas requires many pages of heavy kinetic calculations in classical textbooks and is done in distinct, unrelated chapters. Using Newtons second law for the $N$-body system, we perform this derivation in a few steps with elementary calculations using standard tools of calculus, and no probabilistic setting. Unexpectedly, Debye shielding is encountered on the way to Landau damping. The theory is extended to accommodate a correct description of trapping or chaos due to Langmuir waves, and to avoid the small amplitude assumption for the electrostatic potential. Using the shielded potential, collisional transport is computed for the first time by a convergent expression including the correct calculation of deflections for all impact parameters. Shielding and collisional transport are found to be two related aspects of the repulsive deflections of electrons.
Debye shielding, collisional transport, Landau damping of Langmuir waves, and spontaneous emission of these waves are introduced, in typical plasma physics textbooks, in different chapters. This paper provides a compact unified introduction to these
Computing is not understanding. This is exemplified by the multiple and discordant interpretations of Landau damping still present after seventy years. For long deemed impossible, the mechanical N-body description of this damping, not only enables it
We show that the main difference between classical and quantum systems can be understood in terms of information entropy. Classical systems can be considered the ones where the internal dynamics can be known with arbitrary precision while quantum sys
This paper presents the basic concept of various plasma diagnostics used for the study of plasma characteristics in different plasma experiments ranging from low temperature to high energy density plasma.
Boltzmanns ergodic hypothesis furnishes a possible explanation for the emergence of statistical mechanics in the framework of classical physics. In quantum mechanics, the Eigenstate Thermalization Hypothesis (ETH) is instead generally considered as a