ترغب بنشر مسار تعليمي؟ اضغط هنا

Suris tetrons: possible spectroscopic evidence for four-particle optical excitations of the 2D electron gas

281   0   0.0 ( 0 )
 نشر من قبل Alexei Koudinov
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The excitations of a two-dimensional electron gas in quantum wells with intermediate carrier density (~10^{11} cm^{-2}), i.e., between the exciton-trion- and the Fermi-Sea range, are so far poorly understood. We report on an approach to bridge this gap by a magneto-photoluminescence study of modulation-doped (Cd,Mn)Te quantum well structures. Employing their enhanced spin splitting, we analyzed the characteristic magnetic-field behavior of the individual photoluminescence features. Based on these results and earlier findings by other authors, we present a new approach for understanding the optical transitions at intermediate densities in terms of four-particle excitations, the Suris tetrons, which were up to now only predicted theoretically. All characteristic photoluminescence features are attributed to emission from these quasi-particles when attaining different final states.



قيم البحث

اقرأ أيضاً

While it has been recently demonstrated that, for quasi-2D electron gas (Q2DEG) with one filled miniband, the dynamic exchange $f_x$ and Hartree $f_H$ kernels cancel each other in the low-density regime $r_srightarrow infty$ (by half and completely, for the spin-neutral and fully spin-polarized cases, respectively), here we analytically show that the same happens at arbitrary densities at short distances. This motivates us to study the confinement dependence of the excitations in Q2DEG. Our calculations unambiguously confirm that, at strong confinements, the time-dependent exact exchange excitation energies approach the single-particle Kohn-Sham ones for the spin-polarized case, while the same, but less pronounced, tendency is observed for spin-neutral Q2DEG.
We report inelastic light scattering measurements of dispersive spin and charge density excitations in dilute 2D electron systems reaching densities less than 10^{10} cm^{-2}. In the quantum Hall state at nu=2, roton critical points in the spin inter --Landau level mode show a pronounced softening as r_s is increased. Instead of a soft mode instability predicted by Hartree--Fock calculations for r_s ~ 3.3, we find evidence of multiple rotons in the dispersion of the softening spin excitations. Extrapolation of the data indicates the possibility of an instability for r_s >~ 11.
Semiconductor interfaces, such as these existing in multilayer structures (e.g., quantum wells (QWs)), are interesting because of their ability to form 2D electron gases (2DEGs), in which charge carriers behave completely differently than they do in the bulk. As an example, in the presence of a strong magnetic field, the Landau quantization of electronic levels in the 2DEG results in the quantum Hall effect (QHE), in which Hall conductance is quantized. This chapter is devoted to the properties of such 2DEGs in multilayer structures made of compound semiconductors belonging to the class of Se- and Te-based chalcogenides. In particular, we will also discuss the interesting question of how the QHE phenomenon is affected by the giant Zeeman splitting characteristic of II-VI-based diluted magnetic semiconductors (DMSs), especially when the Zeeman splitting and Landau splitting become comparable. We will also shortly discuss novel topological phases in chalcogenide multilayers.
We develop a theory of magnetooscillations in the photoconductivity of a two-dimensional electron gas observed in recent experiments. The effect is governed by a change of the electron distribution function induced by the microwave radiation. We anal yze a nonlinearity with respect to both the dc field and the microwave power, as well as the temperature dependence determined by the inelastic relaxation rate.
We present an inverted GaAs 2D electron gas with self-assembled InAs quantum dots in close proximity, with the goal of combining quantum transport with quantum optics experiments. We have grown and characterized several wafers -- using transport, AFM and optics -- finding narrow-linewidth optical dots and high-mobility, single subband 2D gases. Despite being buried 500 nm below the surface, the dots are clearly visible on AFM scans, allowing precise localization and paving the way towards a hybrid quantum system integrating optical dots with surface gate-defined nanostructures in the 2D gas.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا