ترغب بنشر مسار تعليمي؟ اضغط هنا

Hybrid Quantum Dot-2D Electron Gas Devices for Coherent Optoelectronics

147   0   0.0 ( 0 )
 نشر من قبل Dominik Zumb\\\"uhl
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present an inverted GaAs 2D electron gas with self-assembled InAs quantum dots in close proximity, with the goal of combining quantum transport with quantum optics experiments. We have grown and characterized several wafers -- using transport, AFM and optics -- finding narrow-linewidth optical dots and high-mobility, single subband 2D gases. Despite being buried 500 nm below the surface, the dots are clearly visible on AFM scans, allowing precise localization and paving the way towards a hybrid quantum system integrating optical dots with surface gate-defined nanostructures in the 2D gas.



قيم البحث

اقرأ أيضاً

The design of electrically driven quantum dot devices for quantum optical applications asks for modeling approaches combining classical device physics with quantum mechanics. We connect the well-established fields of semi-classical semiconductor tran sport theory and the theory of open quantum systems to meet this requirement. By coupling the van Roosbroeck system with a quantum master equation in Lindblad form, we introduce a new hybrid quantum-classical modeling approach, which provides a comprehensive description of quantum dot devices on multiple scales: It enables the calculation of quantum optical figures of merit and the spatially resolved simulation of the current flow in realistic semiconductor device geometries in a unified way. We construct the interface between both theories in such a way, that the resulting hybrid system obeys the fundamental axioms of (non-)equilibrium thermodynamics. We show that our approach guarantees the conservation of charge, consistency with the thermodynamic equilibrium and the second law of thermodynamics. The feasibility of the approach is demonstrated by numerical simulations of an electrically driven single-photon source based on a single quantum dot in the stationary and transient operation regime.
257 - S. Spatzek 2010
Coherent interactions between spins in quantum dots are a key requirement for quantum gates. We have performed pump-probe experiments in which pulsed lasers emitting at different photon energies manipulate two distinct subsets of electron spins withi n an inhomogeneous InGaAs quantum dot ensemble. The spin dynamics are monitored through their precession about an external magnetic field. These measurements demonstrate spin precession phase shifts and modulations of the magnitude of one subset of oriented spins after optical orientation of the second subset. The observations are consistent with results from a model using a Heisenberg-like interaction with microeV-strength.
We investigate the spin-to-charge conversion emerging from a mesoscopic device connected to multiple terminals. We obtain analytical expressions to the characteristic coefficient of spin-to-charge conversion which are applied in two kinds of ballisti c chaotic quantum dots at low temperature. We perform analytical diagrammatic calculations in the universal regime for two-dimensional electron gas and single-layer graphene with strong spin-orbit interaction in the universal regime. Furthermore, our analytical results are confirmed by numerical simulations. Finally, we connect our analytical finds to recent experimental measures giving a conceptual explanation about the apparent discrepancies between them.
112 - S. Li , N. Kang , P. Caroff 2016
Hybrid superconductor-semiconducting nanowire devices provide an ideal platform to investigating novel intragap bound states, such as the Andreev bound states (ABSs), Yu-Shiba-Rusinov (YSR) states, and the Majorana bound states. The competition betwe en Kondo correlations and superconductivity in Josephson quantum dot (QD) devices results in two different ground states and the occurrence of a 0-$pi$ quantum phase transition. Here we report on transport measurements on hybrid superconductor-InSb nanowire QD devices with different device geometries. We demonstrate a realization of continuous gate-tunable ABSs with both 0-type levels and $pi$-type levels. This allow us to manipulate the transition between 0 and $pi$ junction and explore charge transport and spectrum in the vicinity of the quantum phase transition regime. Furthermore, we find a coexistence of 0-type ABS and $pi$-type ABS in the same charge state. By measuring temperature and magnetic field evolution of the ABSs, the different natures of the two sets of ABSs are verified, being consistent with the scenario of phase transition between the singlet and doublet ground state. Our study provides insights into Andreev transport properties of hybrid superconductor-QD devices and sheds light on the crossover behavior of the subgap spectrum in the vicinity of 0-$pi$ transition.
A fundamental goal in the manipulation of quantum systems is the achievement of many coherent oscillations within the characteristic dephasing time T2*[1]. Most manipulations of electron spins in quantum dots have focused on the construction and cont rol of two-state quantum systems, or qubits, in which each quantum dot is occupied by a single electron[2-7]. Here we perform quantum manipulations on a system with more electrons per quantum dot, in a double dot with three electrons. We demonstrate that tailored pulse sequences can be used to induce coherent rotations between 3-electron quantum states. Certain pulse sequences yield coherent oscillations with a very high figure of merit (the ratio of coherence time to rotation time) of >100. The presence of the third electron enables very fast rotations to all possible states, in contrast to the case when only two electrons are used, in which some rotations are slow. The minimum oscillation frequency we observe is >5 GHz.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا