ﻻ يوجد ملخص باللغة العربية
Minimization of ac losses is essential for economic operation of high-temperature superconductor (HTS) ac power cables. A favorable configuration for the phase conductor of such cables has two counter-wound layers of HTS tape-shaped wires lying next to each other and helically wound around a flexible cylindrical former. However, if magnetic materials such as magnetic substrates of the tapes lie between the two layers, or if the winding pitch angles are not opposite and essentially equal in magnitude to each other, current distributes unequally between the two layers. Then, if at some point in the ac cycle the current of either of the two layers exceeds its critical current, a large ac loss arises from the transfer of flux between the two layers. A detailed review of the formalism, its application to the case of paramagnetic substrates including the calculation of this flux transfer loss is presented.
We investigate theoretically the dependence of magnetization loss of a helically wound superconducting tape on the round core radius $R$ and the helical conductor pitch in a ramped magnetic field. Using the thin-sheet approximation, we identify the t
We use a model of vortex dynamics and collective weak pinning theory to study the residual dissipation due to trapped magnetic flux in a dirty superconductor. Using simple estimates, approximate analytical calculations, and numerical simulations, we
Measurements of the ac response represent a widely-used method for probing the properties of superconductors. In the surface superconducting state (SSS), increase of the current beyond the surface critical current $I_c$ leads to breakdown of SSS and
We describe an experimental protocol to characterize magnetic field dependent microwave losses in superconducting niobium microstrip resonators. Our approach provides a unified view that covers two well-known magnetic field dependent loss mechanisms:
We experimentally investigate the vortex induced energy losses in niobium coplanar waveguide resonators with and without quasihexagonal arrays of nanoholes (antidots), where large-area antidot patterns have been fabricated using self-assembling micro