ﻻ يوجد ملخص باللغة العربية
We use a model of vortex dynamics and collective weak pinning theory to study the residual dissipation due to trapped magnetic flux in a dirty superconductor. Using simple estimates, approximate analytical calculations, and numerical simulations, we make predictions and comparisons with experiments performed in CERN and Cornell on resonant superconducting radio-frequency NbCu, doped-Nb and Nb$_3$Sn cavities. We invoke hysteretic losses originating in a rugged pinning potential landscape to explain the linear behavior of the sensitivity of the residual resistance to trapped magnetic flux as a function of the amplitude of the radio-frequency field. Our calculations also predict and describe the crossover from hysteretic-dominated to viscous-dominated regimes of dissipation. We propose simple formulas describing power losses and crossover behavior, which can be used to guide the tuning of material parameters to optimize cavity performance.
The magnetic moment in the superconducting and normal state of a crystalline FeTe0.65Se0.35 superconductor, grown by the Bridgmans method with relatively high growth rate, was measured. The temperature and magnetic field dependences of magnetization
In this paper, we describe the vortex dynamics under high-amplitude microwave drive and its effect on the surface resistance of superconductors. The vortex surface resistance is calculated with a Montecarlo approach, where the vortex motion equation
We study mechanisms of vortex nucleation in Nb$_3$Sn Superconducting RF (SRF) cavities using a combination of experimental, theoretical, and computational methods. Scanning transmission electron microscopy (STEM) image and energy dispersive spectrosc
A major issue for the implementation of large scale superconducting quantum circuits is the interaction with interfacial two-level system defects (TLS) that leads to qubit relaxation and impedes qubit operation in certain frequency ranges that also d
We probe the short-range pinning properties with the application of microwave currents at very high driving frequencies (47.7 GHz) on YBa$_2$Cu$_3$O$_{7-delta}$ films with and without sub-micrometer BaZrO$_3$ inclusions. We explore the temperature an