ترغب بنشر مسار تعليمي؟ اضغط هنا

Monte-Carlo Simulations for the optimisation of a TOF-MIEZE Instrument

150   0   0.0 ( 0 )
 نشر من قبل Robert Georgii Dr.
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The MIEZE (Modulation of Intensity with Zero Effort) technique is a variant of neutron resonance spin echo (NRSE), which has proven to be a unique neutron scattering technique for measuring with high energy resolution in magnetic fields. Its limitations in terms of flight path differences have already been investigated analytically for neutron beams with vanishing divergence. In the present work Monte-Carlo simulations for quasi-elastic MIEZE experiments taking into account beam divergence as well as the sample dimensions are presented. One application of the MIEZE technique could be a dedicated NRSE-MIEZE instrument at the European Spallation Source (ESS) in Sweden. The optimisation of a particular design based on Montel mirror optics with the help of Monte Carlo simulations will be discussed here in detail.



قيم البحث

اقرأ أيضاً

Neutron transport along guides is governed by the Liouville theorem and the technology involved has advanced in recent decades. Computer simulations have proven to be useful tools in the design and conception of neutron guide systems in facilities. I n this study, we use a Monte Carlo method to perform simulations for an S-shaped neutron guide with different dimensions for a Small-Angle Neutron Scattering (SANS) instrument, through the MCSTAS software. A wavelength cutoff is observed and shown to be dependent on the geometrical parameters of the guide. Results for the neutron flux at sample position are presented and a greater sensitivity of cutoffs concerning the curvatures of the guides than to their lengths is noticed. Our results are in agreement with those obtained from the Acceptance Diagram method and we analyze the beam divergence behavior along the S-shaped guide.
134 - J. W. Nam , Y. I. Choi , D. W. Kim 2002
We have developed a detailed Monte Carlo simulation program for the Belle TOF system. Based on GEANT simulation, it takes account of all physics processes in the TOF scintillation counters and readout electronics. The simulation reproduces very well the performance of the Belle TOF system, including the dE/dx response, the time walk effect, the time resolution, and the hit efficiency due to beam background. In this report, we will describe the Belle TOF simulation program in detail.
Ultracold neutrons (UCN) with kinetic energies up to 300 neV can be stored in material or magnetic confinements for hundreds of seconds. This makes them a very useful tool for probing fundamental symmetries of nature, by searching for charge-parity v iolation by a neutron electric dipole moment, and yielding important parameters for Big Bang nucleosynthesis, e.g. in neutron-lifetime measurements. Further increasing the intensity of UCN sources is crucial for next-generation experiments. Advanced Monte Carlo (MC) simulation codes are important in optimization of neutron optics of UCN sources and of experiments, but also in estimation of systematic effects, and in bench-marking of analysis codes. Here we will give a short overview of recent MC simulation activities in this field.
In the UCN{tau} experiment, ultracold neutrons (UCN) are confined by magnetic fields and the Earths gravitational field. Field-trapping mitigates the problem of UCN loss on material surfaces, which caused the largest correction in prior neutron exper iments using material bottles. However, the neutron dynamics in field traps differ qualitatively from those in material bottles. In the latter case, neutrons bounce off material surfaces with significant diffusivity and the population quickly reaches a static spatial distribution with a density gradient induced by the gravitational potential. In contrast, the field-confined UCN -- whose dynamics can be described by Hamiltonian mechanics -- do not exhibit the stochastic behaviors typical of an ideal gas model as observed in material bottles. In this report, we will describe our efforts to simulate UCN trapping in the UCN{tau} magneto-gravitational trap. We compare the simulation output to the experimental results to determine the parameters of the neutron detector and the input neutron distribution. The tuned model is then used to understand the phase space evolution of neutrons observed in the UCN{tau} experiment. We will discuss the implications of chaotic dynamics on controlling the systematic effects, such as spectral cleaning and microphonic heating, for a successful UCN lifetime experiment to reach a 0.01% level of precision.
In this work we report on the Monte Carlo study performed to understand and reproduce experimental measurements of a new plastic b{eta}-detector with cylindrical geometry. Since energy deposition simulations differ from the experimental measurements for such a geometry, we show how the simulation of production and transport of optical photons does allow one to obtain the shapes of the experimental spectra. Moreover, taking into account the computational effort associated with this kind of simulation, we develop a method to convert the simulations of energy deposited into light collected, depending only on the interaction point in the detector. This method represents a useful solution when extensive simulations have to be done, as in the case of the calculation of the response function of the spectrometer in a total absorption {gamma}-ray spectroscopy analysis.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا