ﻻ يوجد ملخص باللغة العربية
In the UCN{tau} experiment, ultracold neutrons (UCN) are confined by magnetic fields and the Earths gravitational field. Field-trapping mitigates the problem of UCN loss on material surfaces, which caused the largest correction in prior neutron experiments using material bottles. However, the neutron dynamics in field traps differ qualitatively from those in material bottles. In the latter case, neutrons bounce off material surfaces with significant diffusivity and the population quickly reaches a static spatial distribution with a density gradient induced by the gravitational potential. In contrast, the field-confined UCN -- whose dynamics can be described by Hamiltonian mechanics -- do not exhibit the stochastic behaviors typical of an ideal gas model as observed in material bottles. In this report, we will describe our efforts to simulate UCN trapping in the UCN{tau} magneto-gravitational trap. We compare the simulation output to the experimental results to determine the parameters of the neutron detector and the input neutron distribution. The tuned model is then used to understand the phase space evolution of neutrons observed in the UCN{tau} experiment. We will discuss the implications of chaotic dynamics on controlling the systematic effects, such as spectral cleaning and microphonic heating, for a successful UCN lifetime experiment to reach a 0.01% level of precision.
The UCN$tau$ experiment is designed to measure the lifetime $tau_{n}$ of the free neutron by trapping ultracold neutrons (UCN) in a magneto-gravitational trap. An asymmetric bowl-shaped NdFeB magnet Halbach array confines low-field-seeking UCN within
A new boron-coated CCD camera is described for direct detection of ultracold neutrons (UCN) through the capture reactions $^{10}$B (n,$alpha$0$gamma$)$^7$Li (6%) and $^{10}$B(n,$alpha$1$gamma$)$^7$Li (94%). The experiments, which extend earlier works
Ultracold neutrons (UCN) with kinetic energies up to 300 neV can be stored in material or magnetic confinements for hundreds of seconds. This makes them a very useful tool for probing fundamental symmetries of nature, by searching for charge-parity v
Neutron transport along guides is governed by the Liouville theorem and the technology involved has advanced in recent decades. Computer simulations have proven to be useful tools in the design and conception of neutron guide systems in facilities. I
This work focuses on the control and understanding of a gravitationally interacting elementary quantum system. It offers a new way of looking at gravitation based on quantum interference: an ultracold neutron, a quantum particle, as an object and as