ﻻ يوجد ملخص باللغة العربية
We calculate the second order viscous correction to the kinetic distribution, $delta f_{(2)}$, and use this result in a hydrodynamic simulation of heavy ion collisions to determine the complete second order correction to the harmonic spectrum, $v_n$. At leading order in a conformal fluid, the first viscous correction is determined by one scalar function, $chi_{0p}$. One moment of this scalar function is constrained by the shear viscosity. At second order in a conformal fluid, we find that $delta f(p)$ can be characterized by two scalar functions of momentum, $chi_{1p}$ and $chi_{2p}$. The momentum dependence of these functions is largely determined by the kinematics of the streaming operator. Again, one moment of these functions is constrained by the parameters of second order hydrodynamics, $tau_pi$ and $lambda_1$. The effect of $delta f_{(2)}$ on the integrated flow is small (up to $v_4$), but is quite important for the higher harmonics at modestly-large $p_T$. Generally, $delta f_{(2)}$ increases the value of $v_n$ at a given $p_T$, and is most important in small systems.
Recently lots of efforts have been made to obtain the next to leading order and Landau-Pomeranchuk-Migdal corrections to the thermal dilepton emission rate in perturbative QCD. Here we apply these results to the plasma created in heavy ion collisions
We investigate the effects of finite baryon density and temperature on the bulk properties of matter formed in relativistic heavy ion collisions within second-order dissipative hydrodynamics. The relativistic fluid evolution equations for heat flow a
The principal component analysis of flow correlations in heavy-ion collisions is studied. The correlation matrix of harmonic flow is generalized to correlations involving several different flow vectors. The method can be applied to study the nonlinea
The study of high energy collisions between heavy nuclei is a field unto itself, distinct from nuclear and particle physics. A defining aspect of heavy ion physics is the importance of a bulk, self-interacting system with a rich space-time substructu
We study charm production in ultra-relativistic heavy-ion collisions by using the Parton-Hadron-String Dynamics (PHSD) transport approach. The initial charm quarks are produced by the PYTHIA event generator tuned to fit the transverse momentum spectr