ﻻ يوجد ملخص باللغة العربية
A number of large spectroscopic surveys of stars in the Milky Way are under way or are being planned. In this context it is important to discuss the extent to which elemental abundances can be used as discriminators between different (known and unknown) stellar populations in the Milky Way. We aim to establish the requirements in terms of precision in elemental abundances, as derived from spectroscopic surveys of the Milky Ways stellar populations, in order to detect interesting substructures in elemental abundance space. We present a simple relation between the minimum number of stars needed to detect a given substructure and the precision of the measurements. The results are in agreement with recent small- and large-scale studies, with high and low precision, respectively. Large-number statistics cannot fully compensate for low precision in the abundance measurements and each survey should carefully evaluate what the main science drivers are for the survey and ensure that the chosen observational strategy will result in the precision necessary to answer the questions posed.
The study of galaxies has changed dramatically over the past few decades with the advent of large-scale astronomical surveys. These large collaborative efforts have made available high-quality imaging and spectroscopy of hundreds of thousands of syst
We present elemental abundances of 13 microlensed dwarf and subgiant stars in the Galactic bulge, which constitute the largest sample to date. We show that these stars span the full range of metallicity from Fe/H=-0.8 to +0.4, and that they follow we
Studies of stellar populations, understood to mean collections of stars with common spatial, kinematic, chemical, and/or age distributions, have been reinvigorated during the last decade by the advent of large-area sky surveys such as SDSS, 2MASS, RA
Using data from the GALAH survey, we explore the dependence of elemental abundances on stellar age and metallicity among Galactic disc stars. We find that the abundance of most elements can be predicted from age and [Fe/H] with an intrinsic scatter o
The hydrogen-deficiency in extremely hot post-AGB stars of spectral class PG1159 is probably caused by a (very) late helium-shell flash or a AGB final thermal pulse that consumes the hydrogen envelope, exposing the usually-hidden intershell region. T