ﻻ يوجد ملخص باللغة العربية
Using data from the GALAH survey, we explore the dependence of elemental abundances on stellar age and metallicity among Galactic disc stars. We find that the abundance of most elements can be predicted from age and [Fe/H] with an intrinsic scatter of about 0.03 dex. We discuss the possible causes for the existence of the abundance-age-metallicity relations. Using a stochastic chemical enrichment scheme based on the size of Supernovae remnants, we show the intrinsic scatter is expected to be small, about 0.05 dex or even smaller if there is additional mixing in the ISM. Elemental abundances show trends with both age and metallicity and the relationship is well described by a simple model in which the dependence of abundance ([X/Fe]) on age and [Fe/H] are additively separable. Elements can be grouped based on the direction of their abundance gradient in the (age,[Fe/H]) plane and different groups can be roughly associated with three distinct nucleosynthetic production sites, the exploding massive stars, the exploding white dwarfs and the AGB stars. However, the abundances of some elements, like Co, La, and Li, show large scatter for a given age and metallicity, suggesting processes other than simple Galactic chemical evolution are at play. We also compare the abundance trends of main-sequence turn-off stars against that of giants, whose ages were estimated using asteroseismic information from the K2 mission. For most elements, the trends of main-sequence turn-off stars are similar to that of giants. The existence of abundance relations implies that we can estimate the age and birth radius of disc stars, which is important for studying the dynamic and chemical evolution of the Galaxy.
Asteroseismology is a promising tool to study Galactic structure and evolution because it can probe the ages of stars. Earlier attempts comparing seismic data from the {it Kepler} satellite with predictions from Galaxy models found that the models pr
In the era of large spectroscopic surveys, massive databases of high-quality spectra provide tools to outline a new picture of our Galaxy. In this framework, an important piece of information is provided by our ability to infer stellar ages. We aim t
The spatial distribution of elemental abundances in the disc of our Galaxy gives insights both on its assembly process and subsequent evolution, and on the stellar nucleogenesis of the different elements. Gradients can be traced using several types o
GALAH and APOGEE are two high resolution multi object spectroscopic surveys that provide fundamental stellar parameters and multiple elemental abundance estimates for $>$ 400,000 stars in the Milky Way. They are complimentary in both sky coverage and
In this work we present and discuss the observations of the Mn abundances for 247 FGK dwarfs, located in the Galactic disc with metallicity -1<Fe/H]<+0.3. The observed stars belong to the substructures of the Galaxy thick and thin discs, and to the H