ﻻ يوجد ملخص باللغة العربية
A novel method to access the complete identification in atomic number Z and mass A of fragments produced in low-energy fission of actinides is presented. This method, based on the use of multi- nucleon transfer and fusion reactions in inverse kinematics, is applied in this work to reactions between a 238U beam and a 12C target to produce and induce fission of moderately excited actinides. The fission fragments are detected and fully identified with the VAMOS spectrometer of GANIL, allowing the measurement of fragment yields of several hundreds of isotopes in a range between A ~ 80 and ~ 160, and from Z ~ 30 to ~ 64. For the first time, complete isotopic yield distributions of fragments from well-defined fissioning systems are available. Together with the precise measurement of the fragment emission angles and velocities, this technique gives further insight into the nuclear-fission process.
Inelastic and multi-nucleon transfer reactions between a $^{238}$U beam, accelerated at 6.14 MeV/u, and a $^{12}$C target were used for the production of neutron-rich, fissioning systems from U to Cm. A Si telescope, devoted to the detection of the t
During the fission process, the nucleus deforms and elongates up to the two fragments inception and their final separation at scission deformation. The evolution of the nucleus energy with deformation is determined by the macroscopic properties of th
The systematic study of fission fragment yields under different initial conditions provides a valuable experimental benchmark for fission models that aim to understand this complex decay channel and to predict reaction product yields. Inverse kinemat
The fusion reactions 12C(12C,a)20Ne and 12C(12C,p)23Na have been studied from E = 2.10 to 4.75 MeV by gamma-ray spectroscopy using a C target with ultra-low hydrogen contamination. The deduced astrophysical S(E)* factor exhibits new resonances at E <
Total cross sections for proton- and deuteron-induced-fission of 208Pb and 238U have been determined in the energy range between 500 MeV and 1 GeV. The experiment has been performed in inverse kinematics at GSI Darmstadt, facilitating the counting of