ترغب بنشر مسار تعليمي؟ اضغط هنا

High-precision measurement of total fission cross sections in spallation reactions of 208Pb and 238U

160   0   0.0 ( 0 )
 نشر من قبل Aleksandra Keli\\'c
 تاريخ النشر 2012
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Total cross sections for proton- and deuteron-induced-fission of 208Pb and 238U have been determined in the energy range between 500 MeV and 1 GeV. The experiment has been performed in inverse kinematics at GSI Darmstadt, facilitating the counting of the projectiles and the identification of the reaction products. High precision between 5 and 7 percent has been achieved by individually counting the beam particles and by registering both fission fragments in coincidence with high efficiency and full Z resolution. Fission was clearly distinguished from other reaction channels. The results were found to deviate by up to 30 percent from Prokofievs systematics on total fission cross sections. There is good agreement with an elaborate experiment performed in direct kinematics.



قيم البحث

اقرأ أيضاً

Spallation residues produced in 1 GeV per nucleon $^{208}$Pb on proton reactions have been studied using the FRagment Separator facility at GSI. Isotopic produc- tion cross-sections of elements from $_{61}$Pm to $_{82}$Pb have been measured down to 0 .1 mb with a high accuracy. The recoil kinetic energies of the produced fragments were also determined. The obtained cross-sections agree with most of the few existing gamma-spectroscopy data. Data are compared with different intra nuclear-cascade and evaporation-fission models. Drastic deviations were found for a standard code used in technical applications.
Spallation residues and fission fragments from 1A GeV 238U projectiles irradiating a liquid hydrogen target were investigated by using the FRagment Separator at GSI for magnetic selection of reaction products including ray-tracing, energy-loss and ti me-of-flight techniques. The longitudinal-momentum spectra of identified fragments were analysed, and evaporation residues and fission fragments could be separated. For 1385 nuclides, production cross-sections covering 3 orders of magnitude with a mean accuracy of 15%, velocities in the U-rest frame and kinetic energies were determined. In the reaction all elements from uranium to nitrogen were found, each with a large number of isotopes.
Fission fragments from 1 A GeV 238U projectiles irradiating a hydrogen target were investigated by using the fragment separator FRS for magnetic selection of reaction products including ray-tracing and DE-ToF techniques. The momentum spectra of 733 i dentified fragments were analysed to provide isotopic production cross sections, fission-fragment velocities and recoil momenta of the fissioning parent nuclei. Besides their general relevance, these quantities are also demanded for applications. Calculations and simulations with codes commonly used and recently developed or improved are compared to the data.
The Bayesian neural network (BNN) method is used to construct a predictive model for fragment prediction of proton induced spallation reactions with the guidance of a simplified EPAX formula. Compared to the experimental data, it is found that the BN N + sEPAX model can reasonably extrapolate with less information compared with BNN method. The BNN + sEPAX method provides a new approach to predict the energy-dependent residual cross sections produced in proton-induced spallation reactions from tens of MeV/u up to several GeV/u.
A novel method to access the complete identification in atomic number Z and mass A of fragments produced in low-energy fission of actinides is presented. This method, based on the use of multi- nucleon transfer and fusion reactions in inverse kinemat ics, is applied in this work to reactions between a 238U beam and a 12C target to produce and induce fission of moderately excited actinides. The fission fragments are detected and fully identified with the VAMOS spectrometer of GANIL, allowing the measurement of fragment yields of several hundreds of isotopes in a range between A ~ 80 and ~ 160, and from Z ~ 30 to ~ 64. For the first time, complete isotopic yield distributions of fragments from well-defined fissioning systems are available. Together with the precise measurement of the fragment emission angles and velocities, this technique gives further insight into the nuclear-fission process.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا