ﻻ يوجد ملخص باللغة العربية
In this paper, a characteristic condition of the projectively flat Kropina metric is given. By it, we prove that a Kropina metric $F=alpha^2/beta$ with constant curvature $K$ and $|beta|_{alpha}=1$ is projectively flat if and only if $F$ is locally Minkowskian.
An $(alpha,beta)$-manifold $(M,F)$ is a Finsler manifold with the Finsler metric $F$ being defined by a Riemannian metric $alpha$ and $1$-form $beta$ on the manifold $M$. In this paper, we classify $n$-dimensional $(alpha,beta)$-manifolds (non-Rander
In this paper, we consider a special class of singular Finsler metrics: $m$-Kropina metrics which are defined by a Riemannian metric and a $1$-form. We show that an $m$-Kropina metric ($m e -1$) of scalar flag curvature must be locally Minkowskian in
In this paper, it is proved that any conformal vector field is homothetic on a locally projectively flat $(alpha,beta)$-space of non-Randers type in dimension $nge 3$, and the local solutions of such a vector field are determined. While on a locally
We introduce a combinatorial method to construct indefinite Ricci-flat metrics on nice nilpotent Lie groups. We prove that every nilpotent Lie group of dimension $leq6$, every nice nilpotent Lie group of dimension $leq7$ and every two-step nilpoten
In this work, we consider a class of Finsler metrics using the warped product notion introduced by Chen, S. and Zhao (2018), with another warping, one that is consistent with static spacetimes. We will give the PDE characterization for the proposed m