ﻻ يوجد ملخص باللغة العربية
We introduce a combinatorial method to construct indefinite Ricci-flat metrics on nice nilpotent Lie groups. We prove that every nilpotent Lie group of dimension $leq6$, every nice nilpotent Lie group of dimension $leq7$ and every two-step nilpotent Lie group attached to a graph admits such a metric. We construct infinite families of Ricci-flat nilmanifolds associated to parabolic nilradicals in the simple Lie groups ${rm SL}(n)$, ${rm SO}(p,q)$, ${rm Sp}(n,mathbb R)$. Most of these metrics are shown not to be flat.
In this work, we consider a class of Finsler metrics using the warped product notion introduced by Chen, S. and Zhao (2018), with another warping, one that is consistent with static spacetimes. We will give the PDE characterization for the proposed m
We prove a uniform diameter bound for long time solutions of the normalized Kahler-Ricci flow on an $n$-dimensional projective manifold $X$ with semi-ample canonical bundle under the assumption that the Ricci curvature is uniformly bounded for all ti
This is partly an expository paper, where the authors work on pseudoriemannian Einstein metrics on nilpotent Lie groups is reviewed. A new criterion is given for the existence of a diagonal Einstein metric on a nice nilpotent Lie group. Classificatio
We consider four-dimensional, Riemannian, Ricci-flat metrics for which one or other of the self-dual or anti-self-dual Weyl tensors is type-D. Such metrics always have a valence-2 Killing spinor, and therefore a Hermitian structure and at least one K
We show that the space of metrics of positive scalar curvature on any 3-manifold is either empty or contractible. Second, we show that the diffeomorphism group of every 3-dimensional spherical space form deformation retracts to its isometry group. Th