ترغب بنشر مسار تعليمي؟ اضغط هنا

Herschel/HIFI observations of a new interstellar water maser: the 5(32)-4(41) transition at 620.701 GHz

106   0   0.0 ( 0 )
 نشر من قبل David Neufeld
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English
 تأليف David A. Neufeld




اسأل ChatGPT حول البحث

Using the Herschel Space Observatorys Heterodyne Instrument for the Far-Infrared (HIFI), we have performed mapping observations of the 620.701 GHz 5(32)-4(41) transition of ortho-H2O within a roughly 1.5 x 1.5 arcmin region encompassing the Kleinmann-Low nebula in Orion, and pointed observations of that transition toward the Orion South condensation and the W49N region of high-mass star formation. Using the Effelsberg 100 m radio telescope, we obtained ancillary observations of the 22.23508 GHz 6(16)-5(23) water maser transition; in the case of Orion-KL, the 621 GHz and 22 GHz observations were carried out within 10 days of each other. The 621 GHz water line emission shows clear evidence for strong maser amplication in all three sources, exhibiting narrow (roughly 1 km/s FWHM) emission features that are coincident (kinematically and/or spatially) with observed 22 GHz features. Moreover, in the case of W49N - for which observations were available at three epochs spanning a two year period - the spectra exhibited variability. The observed 621 GHz/22 GHz line ratios are consistent with a maser pumping model in which the population



قيم البحث

اقرأ أيضاً

CONTEXT: Water vapour maser emission from evolved oxygen-rich stars remains poorly understood. Additional observations, including polarisation studies and simultaneous observation of different maser transitions may ultimately lead to greater insight. AIMS: We have aimed to elucidate the nature and structure of the VY CMa water vapour masers in part by observationally testing a theoretical prediction of the relative strengths of the 620.701 GHz and the 22.235 GHz maser components of ortho water vapour. METHODS: In its high-resolution mode (HRS) the Herschel Heterodyne Instrument for the Infrared (HIFI) offers a frequency resolution of 0.125 MHz, corresponding to a line-of-sight velocity of 0.06 km/s, which we employed to obtain the strength and linear polarisation of maser spikes in the spectrum of VY CMa at 620.701 GHz. Simultaneous ground based observations of the 22.235 GHz maser with the Max-Planck-Institut fur Radioastronomie 100-meter telescope at Effelsberg, provided a ratio of 620.701 GHz to 22.235 GHz emission. RESULTS:We report the first astronomical detection to date of water vapour maser emission at 620.701 GHz. In VY CMa both the 620.701 and the 22.235 GHz polarisation are weak. At 620.701 GHz the maser peaks are superposed on what appears to be a broad emission component, jointly ejected asymmetrically from the star. We observed the 620.701 GHz emission at two epochs 21 days apart, both to measure the potential direction of linearly polarised maser components and to obtain a measure of the longevity of these components. Although we do not detect significant polarisation levels in the core of the line, they rise up to approximately 6% in its wings.
22 GHz water and 6.7 GHz methanol masers are usually thought as signposts of early stages of high-mass star formation but little is known about their associations and the physical environments they occur in. The aim was to obtain accurate positions and morphologies of the water maser emission and relate them to the methanol maser emission recently mapped with Very Long Baseline Interferometry. A sample of 31 methanol maser sources was searched for 22 GHz water masers using the VLA and observed in the 6.7 GHz methanol maser line with the 32 m Torun dish simultaneously. Water maser clusters were detected towards 27 sites finding 15 new sources. The detection rate of water maser emission associated with methanol sources was as high as 71%. In a large number of objects (18/21) the structure of water maser is well aligned with that of the extended emission at 4.5 $mu$m confirming the origin of water emission from outflows. The sources with methanol emission with ring-like morphologies, which likely trace a circumstellar disk/torus, either do not show associated water masers or the distribution of water maser spots is orthogonal to the major axis of the ring. The two maser species are generally powered by the same high-mass young stellar object but probe different parts of its environment. The morphology of water and methanol maser emission in a minority of sources is consistent with a scenario that 6.7 GHz methanol masers trace a disc/torus around a protostar while the associated 22 GHz water masers arise in outflows. The majority of sources in which methanol maser emission is associated with the water maser appears to trace outflows. The two types of associations might be related to different evolutionary phases.
We derive the dense core structure and the water abundance in four massive star-forming regions which may help understand the earliest stages of massive star formation. We present Herschel-HIFI observations of the para-H2O 1_11-0_00 and 2_02-1_11 and the para-H2-18O 1_11-0_00 transitions. The envelope contribution to the line profiles is separated from contributions by outflows and foreground clouds. The envelope contribution is modelled using Monte-Carlo radiative transfer codes for dust and molecular lines (MC3D and RATRAN), with the water abundance and the turbulent velocity width as free parameters. While the outflows are mostly seen in emission in high-J lines, envelopes are seen in absorption in ground-state lines, which are almost saturated. The derived water abundances range from 5E-10 to 4E-8 in the outer envelopes. We detect cold clouds surrounding the protostar envelope, thanks to the very high quality of the Herschel-HIFI data and the unique ability of water to probe them. Several foreground clouds are also detected along the line of sight. The low H2O abundances in massive dense cores are in accordance with the expectation that high densities and low temperatures lead to freeze-out of water on dust grains. The spread in abundance values is not clearly linked to physical properties of the sources.
The HIFI instrument on board the Herschel Space Observatory has been used to observe interstellar nitrogen hydrides along the sight-line towards G10.6-0.4 in order to improve our understanding of the interstellar chemistry of nitrogen. We report obse rvations of absorption in NH N=1-0, J=2-1 and ortho-NH2 1_1,1-0_0,0. We also observed ortho-NH3 1_0-0_0, and 2_0-1_0, para-NH3 2_1-1_1, and searched unsuccessfully for NH+. All detections show emission and absorption associated directly with the hot-core source itself as well as absorption by foreground material over a wide range of velocities. All spectra show similar, non-saturated, absorption features, which we attribute to diffuse molecular gas. Total column densities over the velocity range 11-54 km/s are estimated. The similar profiles suggest fairly uniform abundances relative to hydrogen, approximately 6*10^-9, 3*10^-9, and 3*10^-9 for NH, NH2, and NH3, respectively. These abundances are discussed with reference to models of gas-phase and surface chemistry.
We report the first detection of chloronium, H$_2$Cl$^+$, in the interstellar medium, using the HIFI instrument aboard the emph{Herschel} Space Observatory. The $2_{12}-1_{01}$ lines of ortho-H$_2^{35}$Cl$^+$ and ortho-H$_2^{37}$Cl$^+$ are detected i n absorption towards NGC~6334I, and the $1_{11}-0_{00}$ transition of para-H$_2^{35}$Cl$^+$ is detected in absorption towards NGC~6334I and Sgr~B2(S). The H$_2$Cl$^+$ column densities are compared to those of the chemically-related species HCl. The derived HCl/H$_2$Cl$^+$ column density ratios, $sim$1--10, are within the range predicted by models of diffuse and dense Photon Dominated Regions (PDRs). However, the observed H$_2$Cl$^+$ column densities, in excess of $10^{13}$~cm$^{-2}$, are significantly higher than the model predictions. Our observations demonstrate the outstanding spectroscopic capabilities of HIFI for detecting new interstellar molecules and providing key constraints for astrochemical models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا