ﻻ يوجد ملخص باللغة العربية
Using the Herschel Space Observatorys Heterodyne Instrument for the Far-Infrared (HIFI), we have performed mapping observations of the 620.701 GHz 5(32)-4(41) transition of ortho-H2O within a roughly 1.5 x 1.5 arcmin region encompassing the Kleinmann-Low nebula in Orion, and pointed observations of that transition toward the Orion South condensation and the W49N region of high-mass star formation. Using the Effelsberg 100 m radio telescope, we obtained ancillary observations of the 22.23508 GHz 6(16)-5(23) water maser transition; in the case of Orion-KL, the 621 GHz and 22 GHz observations were carried out within 10 days of each other. The 621 GHz water line emission shows clear evidence for strong maser amplication in all three sources, exhibiting narrow (roughly 1 km/s FWHM) emission features that are coincident (kinematically and/or spatially) with observed 22 GHz features. Moreover, in the case of W49N - for which observations were available at three epochs spanning a two year period - the spectra exhibited variability. The observed 621 GHz/22 GHz line ratios are consistent with a maser pumping model in which the population
CONTEXT: Water vapour maser emission from evolved oxygen-rich stars remains poorly understood. Additional observations, including polarisation studies and simultaneous observation of different maser transitions may ultimately lead to greater insight.
22 GHz water and 6.7 GHz methanol masers are usually thought as signposts of early stages of high-mass star formation but little is known about their associations and the physical environments they occur in. The aim was to obtain accurate positions
We derive the dense core structure and the water abundance in four massive star-forming regions which may help understand the earliest stages of massive star formation. We present Herschel-HIFI observations of the para-H2O 1_11-0_00 and 2_02-1_11 and
The HIFI instrument on board the Herschel Space Observatory has been used to observe interstellar nitrogen hydrides along the sight-line towards G10.6-0.4 in order to improve our understanding of the interstellar chemistry of nitrogen. We report obse
We report the first detection of chloronium, H$_2$Cl$^+$, in the interstellar medium, using the HIFI instrument aboard the emph{Herschel} Space Observatory. The $2_{12}-1_{01}$ lines of ortho-H$_2^{35}$Cl$^+$ and ortho-H$_2^{37}$Cl$^+$ are detected i