ﻻ يوجد ملخص باللغة العربية
We report the first detection of chloronium, H$_2$Cl$^+$, in the interstellar medium, using the HIFI instrument aboard the emph{Herschel} Space Observatory. The $2_{12}-1_{01}$ lines of ortho-H$_2^{35}$Cl$^+$ and ortho-H$_2^{37}$Cl$^+$ are detected in absorption towards NGC~6334I, and the $1_{11}-0_{00}$ transition of para-H$_2^{35}$Cl$^+$ is detected in absorption towards NGC~6334I and Sgr~B2(S). The H$_2$Cl$^+$ column densities are compared to those of the chemically-related species HCl. The derived HCl/H$_2$Cl$^+$ column density ratios, $sim$1--10, are within the range predicted by models of diffuse and dense Photon Dominated Regions (PDRs). However, the observed H$_2$Cl$^+$ column densities, in excess of $10^{13}$~cm$^{-2}$, are significantly higher than the model predictions. Our observations demonstrate the outstanding spectroscopic capabilities of HIFI for detecting new interstellar molecules and providing key constraints for astrochemical models.
Using the Herschel Space Observatorys Heterodyne Instrument for the Far-Infrared (HIFI), we have observed para-chloronium (H2Cl+) toward six sources in the Galaxy. We detected interstellar chloronium absorption in foreground molecular clouds along th
We report additional detections of the chloronium molecular ion, H$_2$Cl$^+$, toward four bright submillimeter continuum sources: G29.96, W49N, W51, and W3(OH). With the use of the HIFI instrument on the Herschel Space Observatory, we observed the $2
The HIFI instrument on board the Herschel Space Observatory has been used to observe interstellar nitrogen hydrides along the sight-line towards G10.6-0.4 in order to improve our understanding of the interstellar chemistry of nitrogen. We report obse
The chemical pathways linking the small organic molecules commonly observed in molecular clouds to the large, complex, polycyclic species long-suspected to be carriers of the ubiquitous unidentified infrared emission bands remain unclear. To investig
We report observations of molecular oxygen (O$_2$) rotational transitions at 487 GHz, 774 GHz, and 1121 GHz toward Orion Peak A. The O2 lines at 487 GHz and 774 GHz are detected at velocities of 10-12 km/s with line widths 3 km/s; however, the transi