ﻻ يوجد ملخص باللغة العربية
In this paper we describe the infinitesimal deformations of null-filiform Leibniz superalgebras over a field of zero characteristic. It is known that up to isomorphism in each dimension there exist two such superalgebras $NF^{n,m}$. One of them is a Leibniz algebra (that is $m=0$) and the second one is a pure Leibniz superalgebra (that is $m eq 0$) of maximum nilindex. We show that the closure of union of orbits of single-generated Leibniz algebras forms an irreducible component of the variety of Leibniz algebras. We prove that any single-generated Leibniz algebra is a linear integrable deformation of the algebra $NF^{n}$. Similar results for the case of Leibniz superalgebras are obtained.
We describe infinitesimal deformations of complex naturally graded filiform Leibniz algebras. It is known that any $n$-dimensional filiform Lie algebra can be obtained by a linear integrable deformation of the naturally graded algebra $F_n^3(0)$. We
In this paper we classify solvable Leibniz algebras whose nilradical is a null-filiform algebra. We extend the obtained classification to the case when the solvable Leibniz algebra is decomposed as a direct sum of its nilradical, which is a direct su
In this paper we describe central extensions of some nilpotent Leibniz algebras. Namely, central extensions of the Leibniz algebra with maximal index of nilpotency are classified. Moreover, non-split central extensions of naturally graded filiform no
The present paper is devoted to the description of rigid solvable Leibniz algebras. In particular, we prove that solvable Leibniz algebras under some conditions on the nilradical are rigid and we describe four-dimensional solvable Leibniz algebras wi
Suppose the ground field $mathbb{F}$ is an algebraically closed field of characteristic different from 2, 3. We determine the Betti numbers and make a decomposition of the associative superalgebra of the cohomology for the model filiform Lie superalg