ﻻ يوجد ملخص باللغة العربية
In this paper we classify solvable Leibniz algebras whose nilradical is a null-filiform algebra. We extend the obtained classification to the case when the solvable Leibniz algebra is decomposed as a direct sum of its nilradical, which is a direct sum of null-filiform ideals, and a one-dimensional complementary subspace. Moreover, in this case we establish that these ideals are ideals of the algebra, as well.
In this paper we show that the method for describing solvable Lie algebras with given nilradical by means of non-nilpotent outer derivations of the nilradical is also applicable to the case of Leibniz algebras. Using this method we extend the classif
A classification exists for Lie algebras whose nilradical is the triangular Lie algebra $T(n)$. We extend this result to a classification of all solvable Leibniz algebras with nilradical $T(n)$. As an example we show the complete classification of all Leibniz algebras whose nilradical is $T(4)$.
The present article is a part of the study of solvable Leibniz algebras with a given nilradical. In this paper solvable Leibniz algebras, whose nilradicals is naturally graded quasi-filiform algebra and the complemented space to the nilradical has maximal dimension, are described up to isomorphism.
We describe solvable Leibniz algebras whose nilradical is a quasi-filiform Leibniz algebra of maximum length.
This work is devoted to the classification of solvable Leibniz algebras with an abelian nilradical. We consider $k-1$ dimensional extension of $k$-dimensional abelian algebras and classify all $2k-1$-dimensional solvable Leibniz algebras with an abelian nilradical of dimension $k$.