ترغب بنشر مسار تعليمي؟ اضغط هنا

k.p subband structure of the LaAlO3/SrTiO3 interface

155   0   0.0 ( 0 )
 نشر من قبل Annalisa Fasolino
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Heterostructures made of transition metal oxides are new tailor-made materials which are attracting much attention. We have constructed a 6-band k.p Hamiltonian and used it within the envelope function method to calculate the subband structure of a variety of LaAlO3/SrTiO3 heterostructures. By use of density functional calculations, we determine the k.p parameters describing the conduction band edge of SrTiO3: the three effective mass parameters, L=0.6104 eV AA^2, M=9.73 eV AA^2, N=-1.616 eV AA^2, the spin orbit splitting Delta_SO=28.5 meV and the low temperature tetragonal distortion energy splitting Delta_T=2.1 meV. For confined systems we find strongly anisotropic non-parabolic subbands. As an application we calculate bands, density of states and magnetic energy levels and compare the results to Shubnikov-de Haas quantum oscillations observed in high magnetic fields. For typical heterostructures we find that electric field strength at the interface of F = 0.1 meV/AA for a carrier density of 7.2 10^{12} cm^-2 results in a subband structure that is similar to experimental results.



قيم البحث

اقرأ أيضاً

Reports of emergent conductivity, superconductivity, and magnetism at oxide interfaces have helped to fuel intense interest in their rich physics and technological potential. Here we employ magnetic force microscopy to search for room-temperature mag netism in the well-studied LaAlO3/SrTiO3 system. Using electrical top gating to deplete electrons from the oxide interface, we directly observe an in-plane ferromagnetic phase with sharply defined domain walls. Itinerant electrons, introduced by a top gate, align antiferromagnetically with the magnetization, at first screening and then destabilizing it as the conductive state is reached. Subsequent depletion of electrons results in a new, uncorrelated magnetic pattern. This newfound control over emergent magnetism at the interface between two non-magnetic oxides portends a number of important technological applications.
Nanoscale control of the metal-insulator transition in LaAlO3/ SrTiO3 heterostructures can be achieved using local voltages applied by a conductive atomic-force microscope probe. One proposed mechanism for the writing and erasing process involves an adsorbed H2O layer at the top LaAlO3 surface. In this picture, water molecules dissociates into OH- and H+ which are then selectively removed by a biased AFM probe. To test this mechanism, writing and erasing experiments are performed in a vacuum AFM using various gas mixtures. Writing ability is suppressed in those environments where H2O is not present. The stability of written nanostructures is found to be strongly associated with the ambient environment. The self-erasure process in air can be strongly suppressed by creating a modest vacuum or replacing the humid air with dry inert gas. These experiments provide strong constraints for theories of both the writing process as well as the origin of interfacial conductance.
We report superconductivity in quasi-1D nanostructures created at the LaAlO3/SrTiO3 interface. Nanostructures having line widths w~10 nm are formed from the parent two-dimensional electron liquid using conductive atomic force microscope lithography. Nanowire cross-sections are small compared to the superconducting coherence length in LaAlO3/SrTiO3 (w<<xi~100 nm), placing them in the quasi-1D regime. Broad superconducting transitions with temperature and finite resistances in the superconducting state well below Tc~200 mK are observed. V-I curves show switching between the superconducting and normal states that are characteristic of superconducting nanowires. The four-terminal resistance in the superconducting state shows an unusual dependence on the current path, varying by as much as an order of magnitude.
Possible ferromagnetism induced in otherwise non-magnetic materials has been motivating intense research in complex oxide heterostructures. Here we show that a confined magnetism is realized at the interface between SrTiO3 and two insulating polar ox ides, BiMnO3 and LaAlO3. By using polarization dependent x-ray absorption spectroscopy, we find that in both cases the magnetic order is stabilized by a negative exchange interaction between the electrons transferred to the interface and local magnetic moments. These local magnetic moments are associated to Ti3+ ions at the interface itself for LaAlO3/SrTiO3 and to Mn3+ ions in the overlayer for BiMnO3/SrTiO3. In LaAlO3/SrTiO3 the induced magnetic moments are quenched by annealing in oxygen, suggesting a decisive role of oxygen vacancies in the stabilization of interfacial magnetism.
Here we investigate LaAlO_3-SrTiO_3 heterostructure withdelta-doping of the interface by LaMnO_3 at less than one monolayer. This doping strongly inhibits the formation of mobile electron layer at the interface. This results in giant increase of the resistance and the thermopower of the heterostructure. Several aspects of this phenomena are investigated. A model to calculate the carrier concentration is presented and effect of doping and detailed temperature dependence is analyzed in terms of model parameters and the weak-scattering theory. The large enhancement of thermopower is attributed to the increased spin and orbital entropy originating from the LaMnO_3 mono-layer.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا