ترغب بنشر مسار تعليمي؟ اضغط هنا

Post-transient relaxation in graphene after an intense laser pulse

343   0   0.0 ( 0 )
 نشر من قبل Junhua Zhang
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

High intensity laser pulses were recently shown to induce a population inverted transient state in graphene [T. Li et al. Phys. Rev. Lett. 108, 167401 (2012)]. Using a combination of hydrodynamic arguments and a kinetic theory we determine the post-transient state relaxation of hot, dense, population inverted electrons towards equilibrium. The cooling rate and charge-imbalance relaxation rate are determined from the Boltzmann-equation including electron-phonon scattering. We show that the relaxation of the population inversion, driven by inter-band scattering processes, is much slower than the relaxation of the electron temperature, which is determined by intra-band scattering processes. This insight may be of relevance for the application of graphene as an optical gain medium.



قيم البحث

اقرأ أيضاً

We theoretically study the Dirac fermion dynamics in a graphene monolayer in the presence of an applied ultrafast laser pulse. The pulse has the duration of a few femtoseconds and the amplitude of ~ 0.1 - 0.5 $mathrm{V/AA}$. The waveform of the pulse is described by Hermit Gaussian polynomials with varying carrier-envelope phase. We show that the ultrafast dynamics of Dirac fermions strongly depends on the carrier-envelope phase and the frequency of the applied pulse. The ultrafast pulse generates an electric current which results in a finite transferred charge. The ultrafast field-driven current and the corresponding net transferred charge depend on the waveform of the applied pulse. Our results pave the way for the development of ultrafast information processing in the terahertz domain.
The possibility of transporting spin information over long distances in graphene, owing to its small intrinsic spin-orbit coupling (SOC) and the absence of hyperfine interaction, has led to intense research into spintronic applications. However, meas ured spin relaxation times are orders of magnitude smaller than initially predicted, while the main physical process for spin dephasing and its charge-density and disorder dependences remain unconvincingly described by conventional mechanisms. Here, we unravel a spin relaxation mechanism for nonmagnetic samples that follows from an entanglement between spin and pseudospin driven by random SOC, which makes it unique to graphene. The mixing between spin and pseudospin-related Berrys phases results in fast spin dephasing even when approaching the ballistic limit, with increasing relaxation times away from the Dirac point, as observed experimentally. The SOC can be caused by adatoms, ripples or even the substrate, suggesting novel spin manipulation strategies based on the pseudospin degree of freedom.
A principal motivation to develop graphene for future devices has been its promise for quantum spintronics. Hyperfine and spin-orbit interactions are expected to be negligible in single-layer graphene. Spin transport experiments, on the other hand, s how that graphenes spin relaxation is orders of magnitude faster than predicted. We present a quantum interference measurement that disentangles sources of magnetic and non-magnetic decoherence in graphene. Magnetic defects are shown to be the primary cause of spin relaxation, while spin-orbit interaction is undetectably small.
For most optoelectronic applications of graphene a thorough understanding of the processes that govern energy relaxation of photoexcited carriers is essential. The ultrafast energy relaxation in graphene occurs through two competing pathways: carrier -carrier scattering -- creating an elevated carrier temperature -- and optical phonon emission. At present, it is not clear what determines the dominating relaxation pathway. Here we reach a unifying picture of the ultrafast energy relaxation by investigating the terahertz photoconductivity, while varying the Fermi energy, photon energy, and fluence over a wide range. We find that sufficiently low fluence ($lesssim$ 4 $mu$J/cm$^2$) in conjunction with sufficiently high Fermi energy ($gtrsim$ 0.1 eV) gives rise to energy relaxation that is dominated by carrier-carrier scattering, which leads to efficient carrier heating. Upon increasing the fluence or decreasing the Fermi energy, the carrier heating efficiency decreases, presumably due to energy relaxation that becomes increasingly dominated by phonon emission. Carrier heating through carrier-carrier scattering accounts for the negative photoconductivity for doped graphene observed at terahertz frequencies. We present a simple model that reproduces the data for a wide range of Fermi levels and excitation energies, and allows us to qualitatively assess how the branching ratio between the two distinct relaxation pathways depends on excitation fluence and Fermi energy.
334 - B.N. Narozhny , I.V. Gornyi 2021
In nearly compensated graphene, disorder-assisted electron-phonon scattering or supercollisions are responsible for both quasiparticle recombination and energy relaxation. Within the hydrodynamic approach, these processes contribute weak decay terms to the continuity equations at local equilibrium, i.e., at the level of ideal hydrodynamics. Here we report the derivation of the decay term due to weak violation of energy conservation. Such terms have to be considered on equal footing with the well-known recombination terms due to nonconservation of the number of particles in each band. At high enough temperatures in the hydrodynamic regime supercollisions dominate both types of the interaction). We also discuss the contribution of supercollisions to the heat transfer equation (generalizing the continuity equation for the energy density in viscous hydrodynamics).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا