ترغب بنشر مسار تعليمي؟ اضغط هنا

Calibrating High-Precision Faraday Rotation Measurements for LOFAR and the Next Generation of Low-Frequency Radio Telescopes

218   0   0.0 ( 0 )
 نشر من قبل Carlos Sotomayor
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Faraday rotation measurements using the current and next generation of low-frequency radio telescopes will provide a powerful probe of astronomical magnetic fields. However, achieving the full potential of these measurements requires accurate removal of the time-variable ionospheric Faraday rotation contribution. We present ionFR, a code that calculates the amount of ionospheric Faraday rotation for a specific epoch, geographic location, and line-of-sight. ionFR uses a number of publicly available, GPS-derived total electron content maps and the most recent release of the International Geomagnetic Reference Field. We describe applications of this code for the calibration of radio polarimetric observations, and demonstrate the high accuracy of its modeled ionospheric Faraday rotations using LOFAR pulsar observations. These show that we can accurately determine some of the highest-precision pulsar rotation measures ever achieved. Precision rotation measures can be used to monitor rotation measure variations - either intrinsic or due to the changing line-of-sight through the interstellar medium. This calibration is particularly important for nearby sources, where the ionosphere can contribute a significant fraction of the observed rotation measure. We also discuss planned improvements to ionFR, as well as the importance of ionospheric Faraday rotation calibration for the emerging generation of low-frequency radio telescopes, such as the SKA and its pathfinders.



قيم البحث

اقرأ أيضاً

Frequency domain multiplexing (fMux) is an established technique for the readout of transition-edge sensor (TES) bolometers in millimeter-wavelength astrophysical instrumentation. In fMux, the signals from multiple detectors are read out on a single pair of wires reducing the total cryogenic thermal loading as well as the cold component complexity and cost of a system. The current digital fMux system, in use by POLARBEAR, EBEX, and the South Pole Telescope, is limited to a multiplexing factor of 16 by the dynamic range of the Superconducting Quantum Interference Device pre-amplifier and the total system bandwidth. Increased multiplexing is key for the next generation of large format TES cameras, such as SPT-3G and POLARBEAR2, which plan to have on the of order 15,000 detectors. Here, we present the next generation fMux readout, focusing on the warm electronics. In this system, the multiplexing factor increases to 64 channels per module (2 wires) while maintaining low noise levels and detector stability. This is achieved by increasing the system bandwidth, reducing the dynamic range requirements though active feedback, and digital synthesis of voltage biases with a novel polyphase filter algorithm. In addition, a version of the new fMux readout includes features such as low power consumption and radiation-hard components making it viable for future space-based millimeter telescopes such as the LiteBIRD satellite.
131 - R. Beck , P. Frick , R. Stepanov 2012
We investigate whether the method of wavelet-based Faraday rotation measure (RM) Synthesis can help us to identify structures of regular and turbulent magnetic fields in extended magnetized objects, such as galaxies and galaxy clusters. Wavelets allo w us to reformulate the RM synthesis method in a scale-dependent way and to visualize the data as a function of Faraday depth and scale. We present observational tests to recognize magnetic field structures. A region with a regular magnetic field generates a broad disk in Faraday space (Faraday spectrum), with two horns when the distribution of cosmic-ray electrons is broader than that of the thermal electrons. Each magnetic field reversal generates one asymmetric horn on top of the disk. A region with a turbulent field can be recognized as a Faraday forest of many components. These tests are applied to the spectral ranges of various synthesis radio telescopes. We argue that the ratio of maximum to minimum wavelengths determines the range of scales that can be identified in Faraday space. A reliable recognition of magnetic field structures requires the analysis of data cubes in position-position-Faraday depth space (PPF cubes), observed over a wide and continuous wavelength range, allowing the recognition of a wide range of scales as well as high resolution in Faraday space. The planned Square Kilometre Array (SKA) will fulfill this condition and will be close to representing a perfect Faraday telescope. The combination of data from the Low Frequency Array (LOFAR) and the Expanded Very Large Array (EVLA) appears to be a promising approach for the recognition of magnetic structures on all scales. The addition of data at intermediate frequencies from the Westerbork Synthesis Radio Telescope (WSRT) or the Giant Meterwave Radio Telescope (GMRT) would fill the gap between the LOFAR and EVLA frequency ranges.
LOFAR, the LOw-Frequency ARray, is a new-generation radio interferometer constructed in the north of the Netherlands and across europe. Utilizing a novel phased-array design, LOFAR covers the largely unexplored low-frequency range from 10-240 MHz and provides a number of unique observing capabilities. Spreading out from a core located near the village of Exloo in the northeast of the Netherlands, a total of 40 LOFAR stations are nearing completion. A further five stations have been deployed throughout Germany, and one station has been built in each of France, Sweden, and the UK. Digital beam-forming techniques make the LOFAR system agile and allow for rapid repointing of the telescope as well as the potential for multiple simultaneous observations. With its dense core array and long interferometric baselines, LOFAR achieves unparalleled sensitivity and angular resolution in the low-frequency radio regime. The LOFAR facilities are jointly operated by the International LOFAR Telescope (ILT) foundation, as an observatory open to the global astronomical community. LOFAR is one of the first radio observatories to feature automated processing pipelines to deliver fully calibrated science products to its user community. LOFARs new capabilities, techniques and modus operandi make it an important pathfinder for the Square Kilometre Array (SKA). We give an overview of the LOFAR instrument, its major hardware and software components, and the core science objectives that have driven its design. In addition, we present a selection of new results from the commissioning phase of this new radio observatory.
61 - C. Sobey 2019
We determined Faraday rotation measures (RMs) towards 137 pulsars in the northern sky, using Low-Frequency Array (LOFAR) observations at 110-190 MHz. This low-frequency RM catalogue, the largest to date, improves the precision of existing RM measurem ents on average by a factor of 20 - due to the low frequency and wide bandwidth of the data, aided by the RM synthesis method. We report RMs towards 25 pulsars for the first time. The RMs were corrected for ionospheric Faraday rotation to increase the accuracy of our catalogue to approximately 0.1 rad m$^{rm -2}$. The ionospheric RM correction is currently the largest contributor to the measurement uncertainty. In addition, we find that the Faraday dispersion functions towards pulsars are extremely Faraday thin - mostly less than 0.001 rad m$^{rm -2}$. We use these new precise RM measurements (in combination with existing RMs, dispersion measures, and distance estimates) to estimate the scale height of the Galactic halo magnetic field: 2.0$pm$0.3 kpc for Galactic quadrants I and II above and below the Galactic plane (we also evaluate the scale height for these regions individually). Overall, our initial low-frequency catalogue provides valuable information about the 3-D structure of the Galactic magnetic field.
Radio continuum (RC) emission in galaxies allows us to measure star formation rates (SFRs) unaffected by extinction due to dust, of which the low-frequency part is uncontaminated from thermal (free-free) emission. We calibrate the conversion from the spatially resolved 140 MHz RC emission to the SFR surface density ($Sigma_{rm SFR}$) at 1 kpc scale. We used recent observations of three galaxies (NGC 3184, 4736, and 5055) from the LOFAR Two-metre Sky Survey (LoTSS), and archival LOw-Frequency ARray (LOFAR) data of NGC 5194. Maps were created with the facet calibration technique and converted to radio $Sigma_{rm SFR}$ maps using the Condon relation. We compared these maps with hybrid $Sigma_{rm SFR}$ maps from a combination of GALEX far-ultraviolet and Spitzer 24 $murm m$ data using plots tracing the relation at $1.2times 1.2$-kpc$^2$ resolution. The RC emission is smoothed with respect to the hybrid $Sigma_{rm SFR}$ owing to the transport of cosmic-ray electrons (CREs). This results in a sublinear relation $(Sigma_{rm SFR})_{rm RC} propto [(Sigma_{rm SFR})_{rm hyb}]^{a}$, where $a=0.59pm 0.13$ (140 MHz) and $a=0.75pm 0.10$ (1365 MHz). Both relations have a scatter of $sigma = 0.3~rm dex$. If we restrict ourselves to areas of young CREs ($alpha > -0.65$; $I_ u propto u^alpha$), the relation becomes almost linear at both frequencies with $aapprox 0.9$ and a reduced scatter of $sigma = 0.2~rm dex$. We then simulate the effect of CRE transport by convolving the hybrid $Sigma_{rm SFR}$ maps with a Gaussian kernel until the RC-SFR relation is linearised; CRE transport lengths are $l=1$-5 kpc. Solving the CRE diffusion equation, we find diffusion coefficients of $D=(0.13$-$1.5) times 10^{28} rm cm^2,s^{-1}$ at 1 GeV. A RC-SFR relation at $1.4$ GHz can be exploited to measure SFRs at redshift $z approx 10$ using $140$ MHz observations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا