ﻻ يوجد ملخص باللغة العربية
We investigate a way of circumventing the sign problem in lattice QCD simulations with a theta-vacuum term, using the PNJL model. We consider the reweighting method for the QCD Lagrangian after the U_A(1) transformation. In the Lagrangian, the P-odd mass term as a cause of the sign problem is minimized. In order to find out a good reference system in the reweighting method, we estimate the average reweighting factor by using the two-flavor PNJL model and eventually find a good reference system.
We propose a practical way of circumventing the sign problem in lattice QCD simulations with a theta-vacuum term. This method is the reweighting method for the QCD Lagrangian after the U_A(1) transformation. In the Lagrangian, the P-odd mass term as
We propose a practical way of circumventing the sign problem in lattice QCD simulations with a theta-vacuum term. This method is the reweighting method for the QCD Lagrangian after the chiral transformation. In the Lagrangian, the P-odd mass term as
We compute the electric dipole moment of proton and neutron from lattice QCD simulations with N_f=2 flavors of dynamical quarks at imaginary vacuum angle theta. The calculation proceeds via the CP odd form factor F_3. A novel feature of our calculati
Deeply virtual Compton scattering (DVCS) attracts a lot of interest due to its sensitivity to generalized parton distributions (GPDs) which provide a rich access to the partonic structure of hadrons. However, the practical extraction of GPDs for this
Lattice field theory with the $theta$ term suffers from the sign problem. The sign problem appears as flattening of the free energy. As an alternative to the conventional method, the Fourier transform method (FTM), we apply the maximum entropy me