ترغب بنشر مسار تعليمي؟ اضغط هنا

A practical solution to the sign problem at finite theta-vacuum angle

132   0   0.0 ( 0 )
 نشر من قبل Takahiro Sasaki
 تاريخ النشر 2012
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a practical way of circumventing the sign problem in lattice QCD simulations with a theta-vacuum term. This method is the reweighting method for the QCD Lagrangian after the U_A(1) transformation. In the Lagrangian, the P-odd mass term as a cause of the sign problem is minimized. In order to find out a good reference system in the reweighting method, we estimate the average reweighting factor by using the two-flavor NJL model and eventually find a good reference system.



قيم البحث

اقرأ أيضاً

We investigate a way of circumventing the sign problem in lattice QCD simulations with a theta-vacuum term, using the PNJL model. We consider the reweighting method for the QCD Lagrangian after the U_A(1) transformation. In the Lagrangian, the P-odd mass term as a cause of the sign problem is minimized. In order to find out a good reference system in the reweighting method, we estimate the average reweighting factor by using the two-flavor PNJL model and eventually find a good reference system.
We propose a practical way of circumventing the sign problem in lattice QCD simulations with a theta-vacuum term. This method is the reweighting method for the QCD Lagrangian after the chiral transformation. In the Lagrangian, the P-odd mass term as a cause of the sign problem is minimized. Additionally, we investigate theta-vacuum effects on the QCD phase diagram for the realistic 2+1 flavor system, using the three-flavor Polyakov-extended Nambu-Jona-Lasinio (PNJL) model and the entanglement PNJL model as an extension of the PNJL model. The theta-vacuum effects make the chiral transition sharper. We finally investigate theta dependence of the transition temperature and compare with the result of the pure gauge lattice simulation with imaginary theta parameter.
We investigate theta-vacuum effects on the QCD phase diagram for the realistic 2+1 flavor system, using the three-flavor Polyakov-extended Nambu-Jona-Lasinio (PNJL) model and the entanglement PNJL model as an extension of the PNJL model. The theta-va cuum effects make the chiral transition sharper. For large theta-vacuum angle the chiral transition becomes first order even if the quark number chemical potential is zero, when the entanglement coupling between the chiral condensate and the Polyakov loop is taken into account. We finally propose a way of circumventing the sign problem on lattice QCD with finite theta.
A general class of holographic theories with a nontrivial $theta$-angle are analyzed. The instanton density operator is dual to a bulk axion field. We calculate the ground-state solutions with nontrivial source, $a_{UV}$, for the axion, for both stee p and soft dilaton potentials in the IR, and both in $d=3$ and $d=4$. We find all cases to be qualitatively similar. We also calculate the spin$=2,0$ glueball spectra and show that the glueball masses monotonically decrease as functions of $a_{UV}$ (or $theta$-angle). The slopes of glueball masses are different, generically, in different potentials. In the case of steep dilaton potentials, the glueball (masses)$^2$ turn negative before the maximum of $a_{UV}$ is attained. We interpret this as a signal for a favored instanton condensation in the bulk. We also investigate strong CP-violation in the effective glueball action.
The nonanalyticity and the sign problem in the Z3-symmetric heavy quark model at low temperature are studied phenomenologically. For the free heavy quarks, the nonanalyticity is analyzed in the relation to the zeros of the grand canonical partition f unction. The Z3-symmetric effective Polyakov-line model (EPLM) in strong coupling limit is also considered as an phenomenological model of Z3-symmetric QCD with large quark mass at low temperature. We examine how the Z3-symmetric EPLM approaches to the original one in the zero-temperature limit. The effects of the Z3-symmetry affect the structure of zeros of the microscopic probability density function at the nonanalytic point. The average value of the Polyakov line can detect the structure, while the other thermodynamic quantities are not sensible to the structure in the zero-temperature limit. The effect of the imaginary quark chemical potential is also discussed. The imaginary part of the quark number density is very sensitive to the symmetry structure at the nonanalytical point. For a particular value of the imaginary quark number chemical potential, large quark number may be induced in the vicinity of the nonanalytical point.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا