ﻻ يوجد ملخص باللغة العربية
Using the {it off-shell} Noether current and potential we compute the entropy for the AdS black holes in new massive gravity. For the non-extremal BTZ black holes by implementing the so-called stretched horizon approach we reproduce the correct expression for the horizon entropy. For the extremal case, we adopt standard formalism in the AdS/CFT correspondence and reproduce the corresponding entropy by computing the central extension term on the asymptotic boundary of the near horizon geometry. We explicitly show the invariance of the angular momentum along the radial direction for extremal as well as non-extremal BTZ black holes in our model. Furthermore, we extend this invariance for the black holes in new massive gravity coupled with a scalar field, which correspond to the holographic renormalization group flow trajectory of the dual field theory. This provides another realization for the holographic c-theorem.
In this paper we generalize the off-shell Abbott-Deser-Tekin (ADT) conserved charge formalism to Palatini theory of gravity with torsion and non-metricity. Our construction is based on the coordinate formalism and the independent dynamic fields are t
A 3-bracket variant of the Virasoro-Witt algebra is constructed through the use of su(1,1) enveloping algebra techniques. The Leibniz rules for 3-brackets acting on other 3-brackets in the algebra are discussed and verified in various situations.
When a measurement is made on a system that is not in an eigenstate of the measured observable, it is often assumed that some conservation law has been violated. Discussions of the effect of measurements on conserved quantities often overlook the pos
We find new, simple cosmological solutions with flat, open, and closed spatial geometries, contrary to the previous wisdom that only the open model is allowed. The metric and the St{u}ckelberg fields are given explicitly, showing nontrivial configura
The generalization of squeezing is realized in terms of the Virasoro algebra. The higher-order squeezing can be introduced through the higher-order time-dependent potential, in which the standard squeezing operator is generalized to higher-order Vira