ﻻ يوجد ملخص باللغة العربية
When Charge Coupled Devices are used for scientific observations, their dark signal is a hindrance. In their pristine state, most CCD pixels are `cool; they exhibit low, quasi uniform dark current, which can be estimated and corrected for. In space, after having been hit by an energetic particle, pixels can turn `hot. They start delivering excessive, less predictable, dark current. The hot pixels need therefore to be flagged so that subsequent analysis may ignore them. The image data of the PICARD SODISM solar telescope (Meftah et al. 2013) require dark signal correction and hot pixel identification. Its frame transfer E2V 42-80 CCD operates at -7{deg}C. Both image and memory zones thus accumulate dark current during, respectively, integration and readout time. These two components must be separated to estimate the dark signal for any observation. This is the purpose of the Dark Signal Model presented in this paper. The dark signal time series of every pixel is processed by the Unbalanced Haar Technique (Fryzlewicz 2007) in order to timestamp when its dark signal is expected to change. In-between those instants, both components are assumed constant and a robust linear regression vs. integration time provides first estimates and a quality coefficient. The latter serves to assign definitive estimates. Our model is part of the SODISM Level 1 data production scheme. To check its reliability, we verify on dark frames that it leaves a negligible residual bias (5 e-), and generates a small RMS error (25 e- rms). The cool pixel level is found to be 4 e-/pxl/s, in agreement with the predicted value. The emergence rate of hot pixels is investigated too. It legitimates a threshold criterion at 50 e-/pxl/s. The growth rate is found to be 4% of the frame area per year. Aspects of the method (adaptation of the Unbalanced Haar Technique, dedicated robust linear regression) have a generic interest.
The Solar Diameter Imager and Surface Mapper (SODISM) on board the PICARD space mission provides wide-field images of the photosphere and chromosphere of the Sun in five narrow pass bands (centered at 215.0, 393.37, 535.7, 607.1, and 782.2 nm). PICAR
Image smear, produced by the shutter-less operation of frame transfer CCD detectors, can be detrimental for many imaging applications. Existing algorithms used to numerically remove smear, do not contemplate cases where intensity levels change consid
The Infra-Red Telescope (IRT) on board the Transient High Energy Sky and Early Universe Surveyor (THESEUS) ESA M5 candidate mission will play a key role in identifying and characterizing moderate to high redshift Gamma-Ray Bursts afterglows. The IRT
The Infra-Red Telescope (IRT) is part of the payload of the THESEUS mission, which is one of the two ESA M5 candidates within the Cosmic Vision program, planned for launch in 2032. The THESEUS payload, composed by two high energy wide field monitors
(Abridged) The Large Area Telescope (Fermi/LAT, hereafter LAT), the primary instrument on the Fermi Gamma-ray Space Telescope (Fermi) mission, is an imaging, wide field-of-view, high-energy gamma-ray telescope, covering the energy range from below 20