ترغب بنشر مسار تعليمي؟ اضغط هنا

The detailed nature of active central cluster galaxies

138   0   0.0 ( 0 )
 نشر من قبل Susan Ilani Loubser
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English
 تأليف S.I. Loubser




اسأل ChatGPT حول البحث

We present detailed integral field unit (IFU) observations of the central few kiloparsecs of the ionised nebulae surrounding four active central cluster galaxies (CCGs) in cooling flow clusters (Abell 0496, 0780, 1644 and 2052). Our sample consists of CCGs with H{alpha} filaments, and have existing data from the X-ray regime available. Here, we present the detailed optical emission-line (and simultaneous absorption line) data over a broad wavelength range to probe the dominant ionisation processes, excitation sources, morphology and kinematics of the hot gas (as well as the morphology and kinematics of the stars). This, combined with the other multiwavelength data, will form a complete view of the different phases (hot and cold gas and stars) and how they interact in the processes of star formation and feedback detected in central galaxies in cooling flow clusters, as well as the influence of the host cluster. We derive the optical dust extinction maps of the four nebulae. We also derive a range of different kinematic properties, given the small sample size. For Abell 0496 and 0780, we find that the stars and gas are kinematically decoupled, and in the case of Abell 1644 we find that these components are aligned. For Abell 2052, we find that the gaseous components show rotation even though no rotation is apparent in the stellar components. To the degree that our spatial resolution reveals, it appears that all the optical forbidden and hydrogen recombination lines originate in the same gas for all the galaxies. Based on optical diagnostic ratios ([OIII]{lambda}5007/H{beta} against [NII]{lambda}6584/H{alpha}, [SII]{lambda}{lambda}6717,6731/H{alpha}, and [OI]{lambda}6300/H{alpha}), all galaxies show extended LINER emission, but that at least one has significant Seyfert emission areas, and at least one other has significant HII like emission line ratios for many pixels. ABRIDGED.



قيم البحث

اقرأ أيضاً

We show how accretion rate governs the physical properties of a sample of unobscured broad-line, narrow-line, and lineless active galactic nuclei (AGNs). We avoid the systematic errors plaguing previous studies of AGN accretion rate by using accurate accretion luminosities (L_int) from well-sampled multiwavelength SEDs from the Cosmic Evolution Survey (COSMOS), and accurate black hole masses derived from virial scaling relations (for broad-line AGNs) or host-AGN relations (for narrow-line and lineless AGNs). In general, broad emission lines are present only at the highest accretion rates (L_int/L_Edd > 0.01), and these rapidly accreting AGNs are observed as broad-line AGNs or possibly as obscured narrow-line AGNs. Narrow-line and lineless AGNs at lower specific accretion rates (L_int/L_Edd < 0.01) are unobscured and yet lack a broad line region. The disappearance of the broad emission lines is caused by an expanding radiatively inefficient accretion flow (RIAF) at the inner radius of the accretion disk. The presence of the RIAF also drives L_int/L_Edd < 10^-2 narrow-line and lineless AGNs to 10 times higher ratios of radio to optical/UV emission than L_int/L_Edd > 0.01 broad-line AGNs, since the unbound nature of the RIAF means it is easier to form a radio outflow. The IR torus signature also tends to become weaker or disappear from L_int/L_Edd < 0.01 AGNs, although there may be additional mid-IR synchrotron emission associated with the RIAF. Together these results suggest that specific accretion rate is an important physical axis of AGN unification, described by a simple model.
We explore how the co-evolution of massive black holes (MBHs) and galaxies is affected by environmental effects, addressing in particular MBHs hosted in the central galaxies of clusters (we will refer to these galaxies in general as CGs). Recently th e sample of MBHs in CGs with dynamically measured masses has increased, and it has been suggested that these MBH masses (M_BH) deviate from the expected correlations with velocity dispersion (sigma) and mass of the bulge (M_bulge) of the host galaxy: MBHs in CGs appear to be `over-massive. This discrepancy is more pronounced when considering the M_BH-sigma relation than the M_BH-M_bulge one. We show that this behavior stems from a combination of two natural factors, (i) that CGs experience more mergers involving spheroidal galaxies and their MBHs, and (ii) that such mergers are preferentially gas-poor. We use a combination of analytical and semi-analytical models to investigate the MBH-galaxy co-evolution in different environments and find that the combination of these two factors explains the trends observed in current data-sets.
436 - Yen-Ting Lin 2009
A novel statistic is proposed to examine the hypothesis that all cluster galaxies are drawn from the same luminosity distribution (LD). In such a statistical model of galaxy LD, the brightest cluster galaxies (BCGs) are simply the statistical extreme of the galaxy population. Using a large sample of nearby clusters, we show that BCGs in high luminosity clusters (e.g., L_tot > 4x10^11 L_sun) are unlikely (probability <3x10^-4) to be drawn from the LD defined by all red cluster galaxies more luminous than M_r=-20. On the other hand, BCGs in less luminous clusters are consistent with being the statistical extreme. Applying our method to the second brightest galaxies, we show that they are consistent with being the statistical extreme, which implies that the BCGs are also distinct from non-BCG luminous, red, cluster galaxies. We point out some issues with the interpretation of the classical tests proposed by Tremaine & Richstone (1977) that are designed to examine the statistical nature of BCGs, investigate the robustness of both our statistical test and those of TR against difficulties in photometry of galaxies of large angular size, and discuss the implication of our findings on surveys that use the luminous red galaxies to measure the baryon acoustic oscillation features in the galaxy power spectrum.
Dust reprocesses the intrinsic radiation of active galactic nuclei (AGNs) to emerge at longer wavelengths. The observed mid-infrared (MIR) luminosity depends fundamentally on the luminosity of the central engine, but in detail it also depends on the geometric distribution of the surrounding dust. To quantify this relationship, we observe nearby normal AGNs in the MIR to achieve spatial resolution better than 100 pc, and we use absorption-corrected X-ray luminosity as a proxy for the intrinsic AGN emission. We find no significant difference between optically classified Seyfert 1 and 2 galaxies. Spectroscopic differences, both at optical and IR wavelengths, indicate that the immediate surroundings of AGNs is not spherically symmetric, as in standard unified AGN models. A quantitative analysis of clumpy torus radiative transfer models shows that a clumpy local environment can account for this dependence on viewing geometry while producing MIR continuum emission that remains nearly isotropic, as we observe, although the material is not optically thin at these wavelengths. We find some luminosity dependence on the X-ray/MIR correlation in the smallest scale measurements, which may indicate enhanced dust emission associated with star formation, even on these sub-100 pc scales.
We present observations in CO(3-2) that, combined with previous observations in CO(2-1), constrain the physical properties of the filamentary molecular gas in the central $sim$6.5 kpc of NGC 1275, the central giant elliptical galaxy of the Perseus cl uster. We find this molecular gas to have a temperature $gtrsim 20$ K and a density $sim$$10^2$-$10^4 {rm cm^{-3}}$, typically warmer and denser than the bulk of Giant Molecular Clouds (GMCs) in the Galaxy. Bathed in the harsh radiation and particle field of the surrounding intracluster X-ray gas, the molecular gas likely has a much higher ionization fraction than that of GMCs. For an ionization fraction of $sim$$10^{-4}$, similar to that of Galactic diffuse ($lesssim 250 {rm cm^{-3}}$) partially-molecular clouds that emit in HCN(1-0) and HCO$^+$(1-0), we show that the same gas traced in CO can produce the previously reported emissions in HCN(3-2), HCO$^+$(3-2), and CN(2-1) from NGC 1275; the dominant source of excitation for all the latter molecules is collisions with electrons. To prevent collapse, as evidenced by the lack of star formation in the molecular filaments, they must consist of thin strands that have cross-sectional radii $lesssim$0.2-2 pc if supported solely by thermal gas pressure; larger radii are permissible if turbulence or poloidal magnetic fields provide additional pressure support. We point out that the conditions required to relate CO luminosities to molecular gas masses in our Galaxy are unlikely to apply in cluster central elliptical galaxies. Rather than being virialized structures analogous to GMCs, we propose that the molecular gas in NGC 1275 comprises pressure-confined structures created by turbulent flows.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا