ترغب بنشر مسار تعليمي؟ اضغط هنا

Massive black holes in central cluster galaxies

157   0   0.0 ( 0 )
 نشر من قبل Marta Volonteri
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We explore how the co-evolution of massive black holes (MBHs) and galaxies is affected by environmental effects, addressing in particular MBHs hosted in the central galaxies of clusters (we will refer to these galaxies in general as CGs). Recently the sample of MBHs in CGs with dynamically measured masses has increased, and it has been suggested that these MBH masses (M_BH) deviate from the expected correlations with velocity dispersion (sigma) and mass of the bulge (M_bulge) of the host galaxy: MBHs in CGs appear to be `over-massive. This discrepancy is more pronounced when considering the M_BH-sigma relation than the M_BH-M_bulge one. We show that this behavior stems from a combination of two natural factors, (i) that CGs experience more mergers involving spheroidal galaxies and their MBHs, and (ii) that such mergers are preferentially gas-poor. We use a combination of analytical and semi-analytical models to investigate the MBH-galaxy co-evolution in different environments and find that the combination of these two factors explains the trends observed in current data-sets.



قيم البحث

اقرأ أيضاً

CONTEXT: The dynamical mass-to-light (M/L) ratios of massive ultra-compact dwarf galaxies (UCDs) are about 50% higher than predicted by stellar population models. AIMS: Here we investigate the possibility that these elevated M/L ratios are caused by a central black hole (BH), heating up the internal motion of stars. We focus on a sample of ~50 extragalactic UCDs for which velocity dispersions and structural parameters have been measured. METHODS: Using up-to-date distance moduli and a consistent treatment of aperture and seeing effects, we calculate the ratio Psi=(M/L)_{dyn}/(M/L)_{pop} between the dynamical and the stellar population M/L of UCDs. For all UCDs with Psi>1 we estimate the mass of a hypothetical central BH needed to reproduce the observed integrated velocity dispersion. RESULTS: Massive UCDs (M>10^7 M_*) have an average Psi = 1.7 +-0.2, implying notable amounts of dark mass in them. We find that, on average, central BH masses of 10-15% of the UCD mass can explain these elevated dynamical M/L ratios. The implied BH masses in UCDs range from several 10^5 M_* to several 10^7 M_*. In the M_BH-Luminosity plane, UCDs are offset by about two orders of magnitude in luminosity from the relation derived for galaxies. Our findings can be interpreted such that massive UCDs originate from progenitor galaxies with masses around 10^9 M_*, and that those progenitors have SMBH occupation fractions of 60-100%. The suggested UCD progenitor masses agree with predictions from the tidal stripping scenario. Lower-mass UCDs (M<10^7 M_*) exhibit a bimodal distribution in Psi, suggestive of a coexistence of massive globular clusters and tidally stripped galaxies in this mass regime. CONCLUSIONS: Central BHs as relict tracers of tidally stripped progenitor galaxies are a plausible explanation for the elevated dynamical M/L ratios of UCDs.
The dynamics of massive black holes (BHs) in galaxy mergers is a rich field of research that has seen much progress in recent years. In this contribution we briefly review the processes describing the journey of BHs during mergers, from the cosmic co ntext all the way to when BHs coalesce. If two galaxies each hosting a central BH merge, the BHs would be dragged towards the center of the newly formed galaxy. If/when the holes get sufficiently close, they coalesce via the emission of gravitational waves. How often two BHs are involved in galaxy mergers depends crucially on how many galaxies host BHs and on the galaxy merger history. It is therefore necessary to start with full cosmological models including BH physics and a careful dynamical treatment. After galaxies have merged, however, the BHs still have a long journey until they touch and coalesce. Their dynamical evolution is radically different in gas-rich and gas-poor galaxies, leading to a sort of dichotomy between high-redshift and low-redshift galaxies, and late-type and early-type, typically more massive galaxies.
We aim to unveil the most massive central cluster black holes in the universe. We present a new search strategy which is based on a black hole mass gain sensitive calorimeter and which links the innermost stellar density profile of a galaxy to the ad iabatic growth of its central SMBH. In a first step we convert observationally inferred feedback powers into SMBH growth rates by using reasonable energy conversion efficiency parameters, $epsilon$. In the main part of this paper we use these black hole growth rates, sorted in logarithmically increasing steps encompassing our whole parameter space, to conduct $N$-Body computations of brightest cluster galaxies with the newly developed MUESLI software. For the initial setup of galaxies we use core-Sersic models in order to account for SMBH scouring. We find that adiabatically driven core re-growth is significant at the highest accretion rates. As a result, the most massive black holes should be located in BCGs with less pronounced cores when compared to the predictions of empirical scaling relations which are usually calibrated in less extreme environments. For efficiency parameters $epsilon<0.1$, BCGs in the most massive, relaxed and X-ray luminous galaxy clusters might even develop steeply rising density cusps. Finally, we discuss several promising candidates for follow up investigations, among them the nuclear black hole in the Phoenix cluster. Based on our results, it might have a mass of the order of $10^{11} M_odot$.
We combine cosmological hydrodynamic simulations with analytic models to evaluate the role of galaxy-scale gravitational torques on the evolution of massive black holes at the centers of star-forming galaxies. We confirm and extend our earlier result s to show that torque-limited growth yields black holes and host galaxies evolving on average along the Mbh-Mbulge relation from early times down to z = 0 and that convergence onto the scaling relation occurs independent of the initial conditions and with no need for mass averaging through mergers or additional self-regulation processes. Smooth accretion dominates the long-term evolution, with black hole mergers with mass ratios >1:5 representing typically a small fraction of the total growth. Winds from the accretion disk are required to eject significant mass to suppress black hole growth, but there is no need for coupling this wind to galactic-scale gas to regulate black holes in a non-linear feedback loop. Torque-limited growth yields a close-to-linear relation for the star formation rate and the black hole accretion rate averaged over galaxy evolution time scales. However, the SFR-AGN connection has significant scatter owing to strong variability of black hole accretion at all resolved time scales. Eddington ratios can be described by a broad lognormal distribution with median value evolving roughly as (1 + z)^1.9, suggesting a main sequence for black hole growth similar to the cosmic evolution of specific SFRs. Our results offer an attractive scenario consistent with available observations in which cosmological gas infall and transport of angular momentum in the galaxy by gravitational instabilities regulate the long-term co-evolution of black holes and star-forming galaxies.
We examine unresolved nuclear X-ray sources in 57 brightest cluster galaxies to study the relationship between nuclear X-ray emission and accretion onto supermassive black holes (SMBHs). The majority of the clusters in our sample have prominent X-ray cavities embedded in the surrounding hot atmospheres, which we use to estimate mean jet power and average accretion rate onto the SMBHs over the past several hundred Myr. We find that ~50% of the sample have detectable nuclear X-ray emission. The nuclear X-ray luminosity is correlated with average accretion rate determined using X-ray cavities, which is consistent with the hypothesis that nuclear X-ray emission traces ongoing accretion. The results imply that jets in systems that have experienced recent AGN outbursts, in the last ~10^7yr, are `on at least half of the time. Nuclear X-ray sources become more luminous with respect to the mechanical jet power as the mean accretion rate rises. We show that nuclear radiation exceeds the jet power when the mean accretion rate rises above a few percent of the Eddington rate, where the AGN apparently transitions to a quasar. The nuclear X-ray emission from three objects (A2052, Hydra A, M84) varies by factors of 2-10 on timescales of 6 months to 10 years. If variability at this level is a common phenomenon, it can account for much of the scatter in the relationship between mean accretion rate and nuclear X-ray luminosity. We find no significant change in the spectral energy distribution as a function of luminosity in the variable objects. The relationship between accretion and nuclear X-ray luminosity is consistent with emission from either a jet, an ADAF, or a combination of the two, although other origins are possible. We also consider the longstanding problem of whether jets are powered by the accretion of cold circumnuclear gas or nearly spherical inflows of hot keV gas.[abridged]
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا