ﻻ يوجد ملخص باللغة العربية
We report on fabrication of whispering-gallery-mode microlasers in a Nd:glass chip by femtosecond laser three-dimensional (3D) micromachining. Main fabrication procedures include the fabrication of freestanding microdisks supported by thin pillars by femtosecond laser ablation of the glass substrate immersed in water, followed by CO2 laser annealing for surface smoothing. Lasing is observed at a pump threshold as low as ~69 {mu}W at room temperature with a continuous-wave laser diode operating at 780nm. This technique allows for fabrication of microcavities of high quality factors in various dielectric materials such as glasses and crystals.
Titanium doped sapphire (Ti:sapphire) is a laser gain material with broad gain bandwidth benefiting from the material stability of sapphire. These favorable characteristics of Ti:sapphire have given rise to femtosecond lasers and optical frequency co
Cuboid-shaped organic microcavities containing a pyrromethene laser dye and supported upon a photonic crystal have been investigated as an approach to reducing the lasing threshold of the cavities. Multiphoton lithography facilitated fabrication of t
A fiber laser is stabilized using a Calcium Fluoride (CaF2) whispering-gallery-mode resonator. It is set up using a semiconductor optical amplifier as a gain medium. The resonator is critically coupled through prisms, and used as a filtering element
Detection and characterization of individual nano-scale particles, virions, and pathogens are of paramount importance to human health, homeland security, diagnostic and environmental monitoring[1]. There is a strong demand for high-resolution, portab
Recently optical whispering-gallery-mode resonators (WGMRs) have emerged as promising platforms to achieve label-free detection of nanoscale objects and to reach single molecule sensitivity. The ultimate detection performance of WGMRs are limited by