ﻻ يوجد ملخص باللغة العربية
The Radio Environment Map (REM) provides an effective approach to Dynamic Spectrum Access (DSA) in Cognitive Radio Networks (CRNs). Previous results on REM construction show that there exists a tradeoff between the number of measurements (sensors) and REM accuracy. In this paper, we analyze this tradeoff and determine that the REM error is a decreasing and convex function of the number of measurements (sensors). The concept of geographic entropy is introduced to quantify this relationship. And the influence of sensor deployment on REM accuracy is examined using information theory techniques. The results obtained in this paper are applicable not only for the REM, but also for wireless sensor network deployment.
Blind rendezvous is a fundamental problem in cognitive radio networks. The problem involves a collection of agents (radios) that wish to discover each other in the blind setting where there is no shared infrastructure and they initially have no knowl
In this paper, a novel spectrum association approach for cognitive radio networks (CRNs) is proposed. Based on a measure of both inference and confidence as well as on a measure of quality-of-service, the association between secondary users (SUs) in
In Cognitive Radio Networks (CRNs), the secondary users (SUs) are allowed to access the licensed channels opportunistically. A fundamental and essential operation for SUs is to establish communication through choosing a common channel at the same tim
Multicasting is a fundamental networking primitive utilized by numerous applications. This also holds true for cognitive radio networks (CRNs) which have been proposed as a solution to the problems that emanate from the static non-adaptive features o
Aerial base station (ABS) is a promising solution for public safety as it can be deployed in coexistence with cellular networks to form a temporary communication network. However, the interference from the primary cellular network may severely degrad