ترغب بنشر مسار تعليمي؟ اضغط هنا

A Hi-GAL study of the high-mass star-forming region G29.96-0.02

178   0   0.0 ( 0 )
 نشر من قبل Maria T. Beltran
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English
 تأليف M.T. Beltran




اسأل ChatGPT حول البحث

Context. G29.96-0.02 is a high-mass star-forming cloud observed at 70, 160, 250, 350, and 500 microns as part of the Herschel survey of the Galactic Plane during the Science Demonstration Phase. Aims. We wish to conduct a far-infrared study of the sources associated with this star-forming region by estimating their physical properties and evolutionary stage, and investigating the clump mass function, the star formation efficiency and rate in the cloud. Methods. We have identified the Hi-GAL sources associated with the cloud, searched for possible counterparts at centimeter and infrared wavelengths, fitted their spectral energy distribution and estimated their physical parameters. Results. A total of 198 sources have been detected in all 5 Hi-GAL bands, 117 of which are associated with 24 microns emission and 87 of which are not associated with 24 microns emission. We called the former sources 24 microns-bright and the latter ones 24 microns-dark. The [70-160] color of the 24 microns-dark sources is smaller than that of the 24 microns-bright ones. The 24 microns-dark sources have lower L_bol and L_bol/M_env than the 24 microns-bright ones for similar M_env, which suggests that they are in an earlier evolutionary phase. The G29-SFR cloud is associated with 10 NVSS sources and with extended centimeter continuum emission well correlated with the 70 microns emission. Most of the NVSS sources appear to be early B or late O-type stars. The most massive and luminous Hi-GAL sources in the cloud are located close to the G29-UC region, which suggests that there is a privileged area for massive star formation towards the center of the G29-SFR cloud. Almost all the Hi-GAL sources have masses well above the Jeans mass but only 5% have masses above the virial mass, which indicates that most of the sources are stable against gravitational collapse. The sources with M_env > M_virial and that ...



قيم البحث

اقرأ أيضاً

Estimating molecular abundances ratios from the direct measurement of the emission of the molecules towards a variety of interstellar environments is indeed very useful to advance in our understanding of the chemical evolution of the Galaxy, and henc e of the physical processes related to the chemistry. It is necessary to increase the sample of molecular clouds, located at different distances, in which the behavior of molecular abundance ratios, such as the 13CO/C18O ratio (X), is studied in detail. We selected the well-studied high-mass star-forming region G29.96-0.02, located at a distance of about 6.2 kpc, which is an ideal laboratory to perform this kind of studies. To study the X towards this region it was used 12CO J=3-2 data obtained from COHRS, 13CO and C18O J=3-2 data from CHIMPS, and 13CO and C18O J=2-1 data retrieved from the CDS database (observed with the IRAM 30m telescope). The distribution of column densities and X throughout the molecular cloud was studied based on LTE and non-LTE methods. Values of X between 1.5 to 10.5, with an average of 5, were found, showing that, besides the dependency between X and the galactocentric distance, the local physical conditions may strongly affect this abundance ratio. We found that correlating the X map with the location of the ionized gas and dark clouds allows us to suggest in which regions the far-UV radiation stalls in dense gaseous components, and in which ones it escapes and selectively photodissociates the C18O isotope. The non-LTE analysis shows that the molecular gas has very different physical conditions, not only spatially across the cloud, but also along the line of sight. This kind of studies may represent a tool to indirectly estimate (from molecular lines observations) the degree of photodissociation in molecular clouds, which is indeed useful to study the chemistry in the interstellar medium.
We present a Herschel far-infrared study towards the rich massive star- forming complex G305, utilising PACS 70, 160 {mu}m and SPIRE 250, 350, and 500 {mu}m observations from the Hi-GAL survey of the Galactic plane. The focus of this study is to iden tify the embedded massive star-forming population within G305, by combining far-infrared data with radio continuum, H2O maser, methanol maser, MIPS, and Red MSX Source survey data available from previous studies. By applying a frequentist technique we are able to identify a sample of the most likely associations within our multi-wavelength dataset, that can then be identified from the derived properties obtained from fitted spectral energy distributions (SEDs). By SED modelling using both a simple modified blackbody and fitting to a comprehensive grid of model SEDs, some 16 candidate associations are identified as embedded massive star-forming regions. We derive a two-selection colour criterion from this sample of log(F70/F500)geq 1 and log(F160/F350)geq 1.6 to identify an additional 31 embedded massive star candidates with no associated star-formation tracers. Using this result we can build a picture of the present day star-formation of the complex, and by extrapolating an initial mass function, suggest a current population of approx 2 times 10^4 young stellar objects (YSOs) present, corresponding to a star formation rate (SFR) of 0.01-0.02 Modot yr^-1. Comparing this resolved star formation rate, to extragalactic star formation rate tracers (based on the Kennicutt-Schmidt relation), we find the star formation activity is underestimated by a factor of geq 2 in comparison to the SFR derived from the YSO population.
133 - Thushara Pillai 2012
H2D+ is a primary ion which dominates the gas-phase chemistry of cold dense gas. Therefore it is hailed as a unique tool in probing the earliest, prestellar phase of star formation. Observationally, its abundance and distribution is however just begi nning to be understood in low-mass prestellar and cluster-forming cores. In high mass star forming regions, H2D+ has been detected only in two cores, and its spatial distribution remains unknown. Here we present the first map of the 372 GHz ortho-H2D+ and N2H+ 4-3 transition in the DR21 filament of Cygnus-X with the JCMT, and N2D+ 3--2 and dust continuum with the SMA. We have discovered five very extended (<= 34000 AU diameter) weak structures in H2D+ in the vicinity of, but distinctly offset from embedded protostars. More surprisingly, the H2D+ peak is not associated with either a dust continuum or N2D+ peak. We have therefore uncovered extended massive cold dense gas that was undetected with previous molecular line and dust continuum surveys of the region. This work also shows that our picture of the structure of cores is too simplistic for cluster forming cores and needs to be refined: neither dust continuum with existing capabilities, nor emission in tracers like N2D+ can provide a complete census of the total prestellar gas in such regions. Sensitive H2D+ mapping of the entire DR21 filament is likely to discover more of such cold quiescent gas reservoirs in an otherwise active high mass star-forming region.
We use the SPIRE Fourier-Transform Spectrometer (FTS) on-board the ESA Herschel Space Telescope to analyse the submillimetre spectrum of the Ultra-compact HII region G29.96-0.02. Spectral lines from species including 13CO, CO, [CI], and [NII] are det ected. A sparse map of the [NII] emission shows at least one other HII region neighbouring the clump containing the UCHII. The FTS spectra are combined with ISO SWS and LWS spectra and fluxes from the literature to present a detailed spectrum of the source spanning three orders of magnitude in wavelength. The quality of the spectrum longwards of 100 {mu}m allows us to fit a single temperature greybody with temperature 80.3pm0.6K and dust emissivity index 1.73pm0.02, an accuracy rarely obtained with previous instruments. We estimate a mass of 1500 Msol for the clump containing the HII region. The clumps bolometeric luminosity of 4 x 10^6 Lsol is comparable to, or slightly greater than, the known O-star powering the UCHII region.
We present observations of twelve rotational transitions of H2O-16, H2O-18, and H2O-17 toward the massive star-forming region NGC 6334 I, carried out with Herschel/HIFI as part of the guaranteed time key program Chemical HErschel Surveys of Star form ing regions (CHESS). We analyze these observations to obtain insights into physical processes in this region. We identify three main gas components (hot core, cold foreground, and outflow) in NGC 6334 I and derive the physical conditions in these components. The hot core, identified by the emission in highly excited lines, shows a high excitation temperature of 200 K, whereas water in the foreground component is predominantly in the ortho- and para- ground states. The abundance of water varies between 4 10^-5 (outflow) and 10^-8 (cold foreground gas). This variation is most likely due to the freeze-out of water molecules onto dust grains. The H2O-18/H2O-17 abundance ratio is 3.2, which is consistent with the O-18/O-17 ratio determined from CO isotopologues. The ortho/para ratio in water appears to be relatively low 1.6(1) in the cold, quiescent gas, but close to the equilibrium value of three in the warmer outflow material (2.5(0.8)).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا