ﻻ يوجد ملخص باللغة العربية
Here we present a decomposition technique for a class of differential games. The technique consists in a decomposition of the target set which produces, for geometrical reasons, a decomposition in the dimensionality of the problem. Using some elements of Hamilton-Jacobi equations theory, we find a relation between the regularity of the solution and the possibility to decompose the problem. We use this technique to solve a pursuit evasion game with multiple agents.
Pursuit-evasion games are ubiquitous in nature and in an artificial world. In nature, pursuer(s) and evader(s) are intelligent agents that can learn from experience, and dynamics (i.e., Newtonian or Lagrangian) is vital for the pursuer and the evader
We analyze a (possibly degenerate) second order mean field games system of partial differential equations. The distinguishing features of the model considered are (1) that it is not uniformly parabolic, including the first order case as a possibility
Mean Field Games with state constraints are differential games with infinitely many agents, each agent facing a constraint on his state. The aim of this paper is to provide a meaning of the PDE system associated with these games, the so-called Mean F
We prove that every repeated game with countably many players, finite action sets, and tail-measurable payoffs admits an $epsilon$-equilibrium, for every $epsilon > 0$.
We propose a new viewpoint on variational mean-field games with diffusion and quadratic Hamiltonian. We show the equivalence of such mean-field games with a relative entropy minimization at the level of probabilities on curves. We also address the ti