ﻻ يوجد ملخص باللغة العربية
We analyze a (possibly degenerate) second order mean field games system of partial differential equations. The distinguishing features of the model considered are (1) that it is not uniformly parabolic, including the first order case as a possibility, and (2) the coupling is a local operator on the density. As a result we look for weak, not smooth, solutions. Our main result is the existence and uniqueness of suitably defined weak solutions, which are characterized as minimizers of two optimal control problems. We also show that such solutions are stable with respect to the data, so that in particular the degenerate case can be approximated by a uniformly parabolic (viscous) perturbation.
We propose a new viewpoint on variational mean-field games with diffusion and quadratic Hamiltonian. We show the equivalence of such mean-field games with a relative entropy minimization at the level of probabilities on curves. We also address the ti
We study a numerical approximation of a time-dependent Mean Field Game (MFG) system with local couplings. The discretization we consider stems from a variational approach described in [Briceno-Arias, Kalise, and Silva, SIAM J. Control Optim., 2017] f
We address the numerical approximation of Mean Field Games with local couplings. For power-like Hamiltonians, we consider both unconstrained and constrained stationary systems with density constraints in order to model hard congestion effects. For fi
Mean field games are concerned with the limit of large-population stochastic differential games where the agents interact through their empirical distribution. In the classical setting, the number of players is large but fixed throughout the game. Ho
Mean field games (MFGs) and the best reply strategy (BRS) are two methods of describing competitive optimisation of systems of interacting agents. The latter can be interpreted as an approximation of the respective MFG system. In this paper we presen