ﻻ يوجد ملخص باللغة العربية
In Part I (in this journal) we argued that the structure function $F_2^{gamma p}(x,Q^2)$ in deep inelastic $ep$ scattering, regarded as a cross section for virtual $gamma^*p$ scattering, has a saturated Froissart-bounded form behaving as $ln^2 (1/x)$ at small $x$. This form provides an excellent fit to the low $x$ HERA data, including the very low $Q^2$ regions, and can be extrapolated reliably to small $x$ using the natural variable $ln(1/x)$. We used our fit to derive quark distributions for values of $x$ down to $x=10^{-14}$. We use those distributions here to evaluate ultra-high energy (UHE) cross sections for neutrino scattering on an isoscalar nucleon, $N=(n+p)/2$, up to laboratory neutrino energies $E_ u sim 10^{16}$-$10^{17}$ GeV where there are now limits on neutrino fluxes. We estimate that these cross sections are accurate to $sim$2% at the highest energies considered, with the major uncertainty coming from the errors in the parameters that were needed to fit $F_2^{gamma p}(x,Q^2)$. We compare our results to recently published neutrino cross sections derived from NLO parton distribution functions, which become much larger at high energies because of the use of power-law extrapolations of quark distributions to small $x$. We argue that our calculation of the UHE $ u N$ cross sections is the best one can make based the existing experimental deep inelastic scattering data. Further, we show that the strong interaction Froissart bound of $ln^2 (1/x)$ on $F_2^{gamma p}$ translates to an exact bound of $ln^3E_ u$ for leading-order-weak $ u N$ scattering. The energy dependence of $ u N$ total cross section measurements consequently has important implications for hadronic interactions at enormous cms (center-of-mass) energies not otherwise accessible.
We argue that the deep inelastic structure function $F_2^{gamma p}(x, Q^2)$, regarded as a cross section for virtual $gamma^*p$ scattering, is hadronic in nature. This implies that its growth is limited by the Froissart bound at high hadronic energie
Estimates are made of the ultra-high energy neutrino cross sections based on an extrapolation to very small Bjorken x of the logarithmic Froissart dependence in x shown previously to provide an excellent fit to the measured proton structure function
The present status of the field theoretical model studies of the deep inelastic scattering induced by (anti)neutrino on the nuclear targets in a wide range of Bjorken variable $x$ and four momentum transfer square $Q^2$, has been reviewed~cite{Haider
In $ u/bar{ u}$-N/A interactions SIS is technically defined in terms of the four-momentum transfer to the hadronic system as non-resonant meson production with $Q^2 lessapprox 1~GeV^2$. This non-resonant meson production intermixes with resonant meso
The energy-energy correlator (EEC) is an event shape observable which probes the angular correlations of energy depositions in detectors at high energy collider facilities. It has been investigated extensively in the context of precision QCD. In this