ﻻ يوجد ملخص باللغة العربية
In $ u/bar{ u}$-N/A interactions SIS is technically defined in terms of the four-momentum transfer to the hadronic system as non-resonant meson production with $Q^2 lessapprox 1~GeV^2$. This non-resonant meson production intermixes with resonant meson production in a regime of similar effective hadronic mass W of the interaction. As $Q^2$ grows and surpasses this $approx 1~GeV^2$ limit, non-resonant interactions begin to take place with quarks within the nucleon indicating the start of DIS region. SIS and DIS regions have received varying degrees of attention from the community. While the theoretical / phenomenological study of $ u$-nucleon and $ u$-nucleus DIS scattering is advanced, such studies of a large portion of the SIS region, particularly the SIS to DIS transition region, have hardly begun. Experimentally, the SIS and the DIS regions for $ u$-nucleon scattering have minimal results and only in the experimental study of the $ u$-nucleus DIS region are there significant results for some nuclei. Since current and future neutrino oscillation experiments have contributions from both higher W SIS and DIS kinematic regions and these regions are in need of both considerable theoretical and experimental study, this review will concentrate on these SIS to DIS transition and DIS kinematic regions surveying our knowledge and the current challenges.
The NuSTEC workshop (https://indico.cern.ch/event/727283) held at LAquila in October 2018 was devoted to neutrino-nucleus scattering in the kinematic region where hadronic systems with invariant masses above the $Delta(1232)$ resonance are produced:
The present status of the field theoretical model studies of the deep inelastic scattering induced by (anti)neutrino on the nuclear targets in a wide range of Bjorken variable $x$ and four momentum transfer square $Q^2$, has been reviewed~cite{Haider
The Super-Scaling Approach (SuSA) model, based on the analogies between electron and neutrino interactions with nuclei, is reviewed and its application to the description of neutrino-nucleus scattering is presented. The contribution of both one- and
We consider deep inelastic scattering (DIS) on a nucleus described using a density expansion. In leading order, the scattering is dominated by the incoherent scattering on individual nucleons distributed using the Thomas-Fermi approximation. We use t
In neutrino interactions with nucleons and nuclei, Shallow Inelastic Scattering (SIS) refers to processes, dominated by non-resonant contributions, in the kinematic region where $Q^2$ is small and the invariant mass of the hadronic system, $W$, is ab