ﻻ يوجد ملخص باللغة العربية
This paper provides convergence analysis for the approximation of a class of path-dependent functionals underlying a continuous stochastic process. In the first part, given a sequence of weak convergent processes, we provide a sufficient condition for the convergence of the path-dependent functional underlying weak convergent processes to the functional of the original process. In the second part, we study the weak convergence of Markov chain approximation to the underlying process when it is given by a solution of stochastic differential equation. Finally, we combine the results of the two parts to provide approximation of option pricing for discretely monitoring barrier option underlying stochastic volatility model. Different from the existing literatures, the weak convergence analysis is obtained by means of metric computations in the Skorohod topology together with the continuous mapping theorem. The advantage of this approach is that the functional under study may be a function of stopping times, projection of the underlying diffusion on a sequence of random times, or maximum/minimum of the underlying diffusion.
We give a probabilistic interpretation of the Monte Carlo scheme proposed by Fahim, Touzi and Warin [Ann. Appl. Probab. 21 (2011) 1322-1364] for fully nonlinear parabolic PDEs, and hence generalize it to the path-dependent (or non-Markovian) case for
The strong $L^2$-approximation of occupation time functionals is studied with respect to discrete observations of a $d$-dimensional c`adl`ag process. Upper bounds on the error are obtained under weak assumptions, generalizing previous results in the
The path independence of additive functionals for SDEs driven by the G-Brownian motion is characterized by nonlinear PDEs. The main result generalizes the existing ones for SDEs driven by the standard Brownian motion.
Avikainen showed that, for any $p,q in [1,infty)$, and any function $f$ of bounded variation in $mathbb{R}$, it holds that $mathbb{E}[|f(X)-f(widehat{X})|^{q}] leq C(p,q) mathbb{E}[|X-widehat{X}|^{p}]^{frac{1}{p+1}}$, where $X$ is a one-dimensional r
We study the limiting behavior of interacting particle systems indexed by large sparse graphs, which evolve either according to a discrete time Markov chain or a diffusion, in which particles interact directly only with their nearest neighbors in the