ﻻ يوجد ملخص باللغة العربية
We classify the 3-point functions of local gauge-invariant single-trace operators in the scalar sector of planar N=4 supersymmetric Yang-Mills involving at least one su(3) operator. In the case of two su(3) and one su(2) operators, the tree-level 3-point function can be expressed in terms of scalar products of su(3) Bethe vectors. Moreover, if the second level Bethe roots of one of the su(3) operators is trivial (set to infinity), this 3-point function can be written in a determinant form. Using the determinant representation, we evaluate the structure constant in the semi-classical limit, when the number of roots goes to infinity.
We give an explicit formula for all tree amplitudes in N=4 SYM, derived by solving the recently presented supersymmetric tree-level recursion relations. The result is given in a compact, manifestly supersymmetric form and we show how to extract from
We compute the one-loop non-holomorphic effective potential for the N=4 SU(n) supersymmetric Yang-Mills theory with the gauge symmetry broken down to the maximal torus. Our approach remains powerful for arbitrary gauge groups and is based on the use
We provide strong evidence that all tree-level 4-point holographic correlators in AdS$_3 times S^3$ are constrained by a hidden 6D conformal symmetry. This property has been discovered in the AdS$_5 times S^5$ context and noticed in the tensor multip
Integrands for colour ordered scattering amplitudes in planar N=4 SYM are dual to those of correlation functions of the energy-momentum multiplet of the theory. The construction can relate amplitudes with different numbers of legs. By graph theory
We perform the twistor (half-Fourier) transform of all tree n-particle superamplitudes in N=4 SYM and show that it has a transparent geometric interpretation. We find that the N^kMHV amplitude is supported on a set of (2k+1) intersecting lines in twi