ﻻ يوجد ملخص باللغة العربية
We consider conditional exact tests of factor effects in designed experiments for discrete response variables. Similarly to the analysis of contingency tables, Markov chain Monte Carlo methods can be used for performing exact tests, especially when large-sample approximations of the null distributions are poor and the enumeration of the conditional sample space is infeasible. To construct a connected Markov chain over the appropriate sample space, a common approach is to compute a Markov basis. Theoretically, a Markov basis can be characterized as a generator of a well-specified toric ideal in a polynomial ring and is computed by computational algebraic softwares. However, the computation of a Markov basis sometimes becomes infeasible even for problems of moderate sizes. In this paper, we obtain the closed form expression of minimal Markov bases for the main effect models of $2^{p-1}$ fractional factorial designs of resolution $p$.
The minimum aberration criterion has been frequently used in the selection of fractional factorial designs with nominal factors. For designs with quantitative factors, however, level permutation of factors could alter their geometrical structures and
A polynomial indicator function of designs is first introduced by Fontana, Pistone and Rogantin (2000) for two-level designs. They give the structure of the indicator function of two-level designs, especially from the viewpoints of the orthogonality
It is known that a Markov basis of the binary graph model of a graph $G$ corresponds to a set of binomial generators of cut ideals $I_{widehat{G}}$ of the suspension $widehat{G}$ of $G$. In this paper, we give another application of cut ideals to sta
We derive a Markov basis consisting of moves of degree at most three for two-state toric homogeneous Markov chain model of arbitrary length without parameters for initial states. Our basis consists of moves of degree three and degree one, which alter
For some variants of regression models, including partial, measurement error or error-in-variables, latent effects, semi-parametric and otherwise corrupted linear models, the classical parametric tests generally do not perform well. Various modificat