ترغب بنشر مسار تعليمي؟ اضغط هنا

Synchronous X-ray and Radio Mode Switches: a Rapid Global Transformation of the Pulsar Magnetosphere

135   0   0.0 ( 0 )
 نشر من قبل Lucien Kuiper
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Pulsars emit low-frequency radio waves through to high-energy gamma-rays that are generated anywhere from the surface out to the edges of the magnetosphere. Detecting correlated mode changes in the multi-wavelength emission is therefore key to understanding the physical relationship between these emission sites. Through simultaneous observations, we have detected synchronous switching in the radio and X-ray emission properties of PSR B0943+10. When the pulsar is in a sustained radio bright mode, the X-rays show only an un-pulsed, non-thermal component. Conversely, when the pulsar is in a radio quiet mode, the X-ray luminosity more than doubles and a 100%-pulsed thermal component is observed along with the non-thermal component. This indicates rapid, global changes to the conditions in the magnetosphere, which challenge all proposed pulsar emission theories.



قيم البحث

اقرأ أيضاً

46 - P. B. Jones 2018
It is shown that the ion-proton magnetosphere is unstable in a limited area of the P - Pdot plane against transitions to a self-sustaining inverse Compton scattering mode in which the particles accelerated are mainly protons with a small component of positrons. It is argued that this mode cannot be absolutely stable. The number density of any outward-moving pair plasma is small and electron and positron Lorentz factors too high to support growth of any collective mode capable of exciting normal pulsar coherent radio emission. Particle fluxes and the position at which they pass through the light cylinder are mode-dependent and in principle, transitions can be accompanied by changes in spin-down torque. The properties of the system are discussed in relation to observations of nulls, mode-changes, and the group of long-term intermittent pulsars.
Observations obtained in the last years challenged the widespread notion that rotation-powered neutron stars are steady X-ray emitters. Besides a few allegedly rotation-powered neutron stars that showed magnetar-like variability, a particularly inter esting case is that of PSR B0943+10. Recent observations have shown that this pulsar, well studied in the radio band where it alternates between a bright and a quiescent mode, displays significant X-ray variations, anticorrelated in flux with the radio emission. The study of such synchronous radio/X-ray mode switching opens a new window to investigate the processes responsible for the pulsar radio and high-energy emission. Here we review the main X-ray properties of PSR B0943+10 derived from recent coordinated X-ray and radio observations.
We report on simultaneous X-ray and radio observations of the mode-switching pulsar PSR B0943+10 obtained with the XMM-Newton satellite and the LOFAR, LWA and Arecibo radio telescopes in November 2014. We confirm the synchronous X-ray/radio switching between a radio-bright (B) and a radio-quiet (Q) mode, in which the X-ray flux is a factor ~2.4 higher than in the B-mode. We discovered X-ray pulsations, with pulsed fraction of 38+/-5% (0.5-2 keV), during the B-mode, and confirm their presence in Q-mode, where the pulsed fraction increases with energy from ~20% up to ~65% at 2 keV. We found marginal evidence for an increase in the X-ray pulsed fraction during B-mode on a timescale of hours. The Q-mode X-ray spectrum requires a fit with a two-component model (either a power-law plus blackbody or the sum of two blackbodies), while the B-mode spectrum is well fit by a single blackbody (a single power-law is rejected). With a maximum likelihood analysis, we found that in Q-mode the pulsed emission has a thermal blackbody spectrum with temperature ~3.4x10^6 K and the unpulsed emission is a power-law with photon index ~2.5, while during B-mode both the pulsed and unpulsed emission can be fit by either a blackbody or a power law with similar values of temperature and photon index. A Chandra image shows no evidence for diffuse X-ray emission. These results support a scenario in which both unpulsed non-thermal emission, likely of magnetospheric origin, and pulsed thermal emission from a small polar cap (~1500 m^2) with a strong non-dipolar magnetic field (~10^{14} G), are present during both radio modes and vary in intensity in a correlated way. This is broadly consistent with the predictions of the partially screened gap model and does not necessarily imply global magnetospheric rearrangements to explain the mode switching.
We report on simultaneous X-ray and radio observations of the radio-mode-switching pulsar PSR B1822-09 with ESAs XMM-Newton and the WSRT, GMRT and Lovell radio telescopes. PSR B1822-09 switches between a radio-bright and radio-quiet mode, and we disc overed a relationship between the durations of its modes and a known underlying radio-modulation timescale within the modes. We discovered X-ray (energies 0.2-1.4 keV) pulsations with a broad sinusoidal pulse, slightly lagging the radio main pulse in phase by 0.094 +/- 0.017, with an energy-dependent pulsed fraction varying from ~0.15 at 0.3 keV to ~0.6 at 1 keV. No evidence is found for simultaneous X-ray and radio mode switching. The total X-ray spectrum consists of a cool component (T ~ 0.96 x 10^6 K, hot-spot radius R ~ 2.0 km) and a hot component (T ~ 2.2 x 10^6 K, R ~ 100 m). The hot component can be ascribed to the pulsed emission and the cool component to the unpulsed emission. The high-energy characteristics of PSR B1822-09 resemble those of middle-aged pulsars such as PSR B0656+14, PSR B1055-52 and Geminga, including an indication for pulsed high-energy gamma-ray emission in Fermi LAT data. Explanations for the high pulsed fraction seem to require different temperatures at the two poles of this orthogonal rotator, or magnetic anisotropic beaming effects in its strong magnetic field. In the X-ray skymap we found a harder source at only (5.1+/- 0.5 )arcsec from PSR B1822-09, which might be a pulsar wind nebula.
Radio pulsars with millisecond spin periods are thought to have been spun up by transfer of matter and angular momentum from a low-mass companion star during an X-ray-emitting phase. The spin periods of the neutron stars in several such low-mass X-ra y binary (LMXB) systems have been shown to be in the millisecond regime, but no radio pulsations have been detected. Here we report on detection and follow-up observations of a nearby radio millisecond pulsar (MSP) in a circular binary orbit with an optically identified companion star. Optical observations indicate that an accretion disk was present in this system within the last decade. Our optical data show no evidence that one exists today, suggesting that the radio MSP has turned on after a recent LMXB phase.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا