ترغب بنشر مسار تعليمي؟ اضغط هنا

A Radio Pulsar/X-ray Binary Link

144   0   0.0 ( 0 )
 نشر من قبل Anne Archibald
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Radio pulsars with millisecond spin periods are thought to have been spun up by transfer of matter and angular momentum from a low-mass companion star during an X-ray-emitting phase. The spin periods of the neutron stars in several such low-mass X-ray binary (LMXB) systems have been shown to be in the millisecond regime, but no radio pulsations have been detected. Here we report on detection and follow-up observations of a nearby radio millisecond pulsar (MSP) in a circular binary orbit with an optically identified companion star. Optical observations indicate that an accretion disk was present in this system within the last decade. Our optical data show no evidence that one exists today, suggesting that the radio MSP has turned on after a recent LMXB phase.



قيم البحث

اقرأ أيضاً

We report on observations of the unusual neutron-star binary system FIRST J102347.6+003841 carried out using the XMM-Newton satellite. This system consists of a radio millisecond pulsar in an 0.198-day orbit with a ~0.2 solar-mass Roche-lobe-filling companion, and appears to have had an accretion disk in 2001. We observe a hard power-law spectrum (Gamma = 1.26(4)) with a possible thermal component, and orbital variability in X-ray flux and possibly hardness of the X-rays. We also detect probable pulsations at the pulsar period (single-trial significance ~4.5 sigma from an 11(2)% modulation), which would make this the first system in which both orbital and rotational X-ray pulsations are detected. We interpret the emission as a combination of X-rays from the pulsar itself and from a shock where material overflowing the companion meets the pulsar wind. The similarity of this X-ray emission to that seen from other millisecond pulsar binary systems, in particular 47 Tuc W (PSR J0024-7204W) and PSR J1740-5340, suggests that they may also undergo disk episodes similar to that seen in J1023 in 2001.
We present the results obtained from analysis of two AstroSat observations of the high mass X-ray binary pulsar OAO 1657-415. The observations covered 0.681-0.818 and 0.808-0.968 phases of the $sim$10.4 day orbital period of the system, in March and July 2019, respectively. Despite being outside the eclipsing regime, the power density spectrum from the first observation lacks any signature of pulsation or quasi-periodic oscillations. However, during July observation, X-ray pulsations at a period of 37.0375 s were clearly detected in the light curves. The pulse profiles from the second observation consist of a broad single peak with a dip-like structure in the middle across the observed energy range. We explored evolution of the pulse profile in narrow time and energy segments. We detected pulsations in the light curves obtained from 0.808--0.92 orbital phase range, which is absent in the remaining part of the observation. The spectrum of OAO 1657-415 can be described by an absorbed power-law model along with an iron fluorescent emission line and a blackbody component for out-of-eclipse phase of the observation. Our findings are discussed in the frame of stellar wind accretion and accretion wake at late orbital phases of the binary.
We present X-ray observations of the redback eclipsing radio millisecond pulsar and candidate radio pulsar/X-ray binary transition object PSR J1723-2837. The X-ray emission from the system is predominantly non-thermal and exhibits pronounced variabil ity as a function of orbital phase, with a factor of ~2 reduction in brightness around superior conjunction. Such temporal behavior appears to be a defining characteristic of this variety of peculiar millisecond pulsar binaries and is likely caused by a partial geometric occultation by the main-sequence-like companion of a shock within the binary. There is no indication of diffuse X-ray emission from a bow shock or pulsar wind nebula associated with the pulsar. We also report on a search for point source emission and $gamma$-ray pulsations in Fermi Large Area Telescope data using a likelihood analysis and photon probability weighting. Although PSR J1723-2837 is consistent with being a $gamma$-ray point source, due to the strong Galactic diffuse emission at its position a definitive association cannot be established. No statistically significant pulsations or modulation at the orbital period are detected. For a presumed source detection, the implied $gamma$-ray luminosity is $lesssim$5% of its spin-down power. This indicates that PSR J1723-2837 is either one of the least efficient $gamma$-ray producing millisecond pulsars or, if the detection is spurious, the $gamma$-ray emission pattern is not directed towards us.
The frequency-dependent periodic active window of the fast radio burst FRB 180916.J0158+65 (FRB 180916B) was observed recently. In this Letter, we propose that a Be/X-ray binary (BeXRB) system, which is composed of a neutron star (NS) and a Be star w ith a circumstellar disk, might be the source of a repeating FRB with periodic activities, and apply this model to explain the activity window of FRB 180916B. The interaction between the NS magnetosphere and the accreted material results in evolution of the spin period and the centrifugal force of the NS, leading to the change of the stress in the NS crust. When the stress of the crust reaches the critical value, a starquake occurs and further produces FRBs. The interval between starquakes is estimated to be a few days that is smaller than the active window of FRB 180916B. When the NS moves out of the disk of the Be star, the interval between starquakes becomes much longer than the orbital period, which corresponds to the non-active phase. In this model, due to the absorption of the disk of the Be star, a frequency-dependent active window would appear for the FRBs, which is consistent with the observed properties of FRB 180916B. And the contribution of dispersion measure (DM) from the disk of the Be star is small. In addition, the location of FRB 180916B in the host galaxy is consistent with a BeXRB system.
116 - Arash Bahramian 2014
We use K-band spectroscopy of the counterpart to the rapidly variable X-ray transient XMMU J174445.5-295044 to identify it as a new symbiotic X-ray binary. XMMU J174445.5-295044 has shown a hard X-ray spectrum (we verify its association with an Integ ral/IBIS 18-40 keV detection in 2013 using a short Swift/XRT observation), high and varying N$_H$, and rapid flares on timescales down to minutes, suggesting wind accretion onto a compact star. We observed its near-infrared counterpart using the Near-infrared Integral Field Spectrograph (NIFS) at Gemini-North, and classify the companion as ~ M2 III. We infer a distance of $3.1^{+1.8}_{-1.1}$ kpc (conservative 1-sigma errors), and therefore calculate that the observed X-ray luminosity (2-10 keV) has reached to at least 4$times10^{34}$ erg/s. We therefore conclude that the source is a symbiotic X-ray binary containing a neutron star (or, less likely, black hole) accreting from the wind of a giant.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا